Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (4): 78-83    DOI: 10.13523/j.cb.20190410
    
Research Progress in Mycoplasma hyopneumonia Detection Technology
Zuo-bo XU1,Jiu-bing LI2,Hong-lei DING1**()
1 Laboratory of Veterinary Lemology, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
2 High School Affiliated to Southwest University, Chongqing 400700, China
Download: HTML   PDF(430KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Mycoplasmal pneumonia of swine (MPS) is a severe respiratory disease of pig which is caused by Mycoplasma hyopneumoniae (Mhp) worldwide. The disease decreased feed conversion efficiency causing significant economic loss. Accurate, sensitive and quick detection method is much helpful for understanding the prevalence of Mhp in pig farms, and also can improve the preventive and therapeutic measures, and management practice. Etiological, molecular biology, and serological detection methods of Mhp were reviewed. Comprehensive data of Mhp detection methods for scientists was provided.



Key wordsMycoplasma hyopneumoniae      Detection      Pathogen      Molecular biology      ELISA     
Received: 21 October 2018      Published: 08 May 2019
ZTFLH:  S852.62  
Corresponding Authors: Hong-lei DING     E-mail: hongleiding@swu.edu.cn
Cite this article:

Zuo-bo XU,Jiu-bing LI,Hong-lei DING. Research Progress in Mycoplasma hyopneumonia Detection Technology. China Biotechnology, 2019, 39(4): 78-83.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190410     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I4/78

PCR类型 目的基因 检测下限 基因大小(bp) 临床样本类型 参考文献
普通PCR 16S rRNA 4×102个细胞 520 鼻腔分泌物、支气管肺泡灌洗液和肺脏 [11]
16S rRNA 1 000个基因组 200 鼻腔分泌物、支气管肺泡细胞灌洗液和肺组织 [12]
16S rRNA 5CFU 649 鼻拭子 [13]
P36 0.5~50pg DNA 948 气管细支气管拭子、肺匀浆、鼻拭子 [4]
P46 0.5ng DNA 580 气管细支气管拭子、肺匀浆、鼻拭子 [4]
ABC转运体基因 500fg DNA 1 561 气管支气管灌洗液 [15]
巢式PCR MHYP1-03-950重复序列 1个细胞/过滤膜 808 过滤的空气 [18]
16S rRNA 80个细胞 649 气管-支气管灌洗液、鼻拭子 [19]
ABC转运体基因 1fg DNA 706 气管-支气管灌洗液、鼻拭子 [20]
β2-微球蛋白基因 0.5~1fg DNA 240 气管- 支气管灌洗液、支气管肺泡灌洗液 [21]
mhp165 5fg/μl DNA 628 鼻拭子 [23]
多重PCR P36P46 未给出 948和580 气管细支气管拭子、肺匀浆、鼻拭子 [4]
荧光定量PCR ABC转运体基因 1fg DNA 706 支气管拭子 [22]
MHYP1-03-950重复序列 1fg DNA 808 支气管拭子 [22]
mhp165 2.5fg/μl DNA 132 鼻拭子 [23]
mhp183 2.5fg/μl DNA 90 鼻拭子 [23]
P46P97P102 1.3fg/μl DNA 150、101和137 鼻腔、扁桃体、气管和肺组织 [24]
LAMP mhp165 10fg DNA 240 鼻拭子、肺组织 [28]
基因芯片 P46 6.8×103拷贝/μl 213 未给出 [29]
Table 1 Comparison of reported PCR-based techniques used to detect Mycoplasma hyopneumoniae
[1]   Maes D, Segales J, Meyns T , et al. Control of Mycoplasma hyopneumoniae, infections in pigs. Vet Microbiol, 2008,126(4):297-309.
doi: 10.1016/j.vetmic.2007.09.008 pmid: 17964089
[2]   Maes D, Sibila M, Kuhnert P , et al. Update on Mycoplasma hyopneumoniae infections in pigs: Knowledge gaps for improved disease control. Transbound Emerg Dis, 2018,65(Suppl 1):110-124.
doi: 10.1111/tbed.12677 pmid: 28834294
[3]   华利忠, 邵国青, 周勇岐 . 以疫苗免疫为核心的猪气喘病控制与净化技术. 中国兽药杂志, 2012,46(7):50-53.
doi: 10.3969/j.issn.1002-1280.2012.07.015
[3]   Hua L Z, Shao G Q, Zhou Y Q . Control and eradication of Mycoplasma hyopneumoniae based on vaccine immunization. Chinese Journal of Veterinary Drug, 2012,46(7):50-53.
doi: 10.3969/j.issn.1002-1280.2012.07.015
[4]   Caron J, Ouardani M, Dea S . Diagnosis and differentiation of Mycoplasma hyopneumoniae and Mycoplasma hyorhinis infections in pigs by PCR amplification of the p36 and p46 genes. J Clin Microbiol, 2000,38(4):1390-1396.
[5]   Friis N . A selective medium for Mycoplasma suipneumoniae. Acta Vet Scand, 1971,12(3):454-456.
[6]   Friis N F . Some recommendations concerning primary isolation of Mycoplasma suipneumoniae and Mycoplasma flocculare a survey. Nord Vet Med, 1975,27(6):337-339.
[7]   江苏省农业科学研究所畜牧兽医研究室. 猪气喘病病原体-猪肺炎支原体的分离和培养研究. 中国兽医科学, 1978,1:17-20.
[7]   Laboratory of Animal Husbandry and Veterinary Medicine , Jiangsu Institute of Agricultural Sciences. Isolation and culture of Mycoplasma hyopneumoniae, pathogen of porcine enzootic pneumonia. Chinese Vetrinary Science, 1978,1:17-20.
[8]   Kamminga T, Slagman S J , Bijlsma J J E , et al. Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate. Biotechnol Bioeng, 2017,114(10):2339-2347.
doi: 10.1002/bit.26347 pmid: 28600895
[9]   Cook B S, Beddow J G, Manso-Silván L , et al. Selective medium for culture of Mycoplasma hyopneumoniae. Vet Microbiol, 2016,195:158-164.
doi: 10.1016/j.vetmic.2016.09.022 pmid: 5081061
[10]   李石, 李吉力, 周霞 . 猪肺炎支原体生长培养基的筛选. 黑龙江畜牧兽医, 2014,18:61-63.
[10]   Li S, Li J L, Zhou X . Screening of growth medium for Mycoplasma hyopneumoniae. Heilongjiang Animal Science and Veterinary Medicine, 2014,18:61-63.
[11]   Harasawa R, Koshimizu K, Takeda O , et al. Detection of Mycoplasma hyopneumoniae DNA by the polymerase chain reaction. Mol Cell Probes, 1991,5(2):103-109.
doi: 10.1016/0890-8508(91)90003-3 pmid: 2072931
[12]   Stemke G W, Phan R, Young T F , et al. Differentiation of Mycoplasma hyopneumoniae, M. flocculare, and M. hyorhinis on the basis of amplification of a 16S rRNA gene sequence Am J Vet Res, 1994,55(1):81-84.
[13]   Mattsson J G, Bergström K, Wallgren P , et al. Detection of Mycoplasma hyopneumoniae in nose swabs from pigs by in vitro amplification of the 16S rRNA gene. J Clin Microbiol, 1995,33(4):893-897.
[14]   Stemke G W . Gene amplification (PCR) to detect and differentiate mycoplasmas in porcine mycoplasmal pneumonia. Lett Appl Microbiol, 1997,25(5):327-330.
doi: 10.1046/j.1472-765X.1997.00243.x pmid: 9418066
[15]   Blanchard B, Kobisch M, Bové J M , et al. Polymerase chain reaction for Mycoplasma hyopneumoniae detection in tracheobronchiolar washings from pigs. Mol Cell Probes, 1996,10(1):15-22.
doi: 10.1006/mcpr.1996.0003 pmid: 8684372
[16]   Baumeister A K, Runge M, Ganter M , et al. Detection of Mycoplasma hyopneumoniae in bronchoalveolar lavage fluids of pigs by PCR. J Clin Microbiol, 1998,36(7):1984-1988.
[17]   Stakenborg T, Vicca J, Butaye P , et al. A multiplex PCR to identify porcine mycoplasmas present in broth cultures. Vet Res Commun, 2006,30(3):239-247.
doi: 10.1007/s11259-006-3226-3 pmid: 16437299
[18]   Stärk K D C, Nicolet J, Frey J . Detection of Mycoplasma hyopneumoniae by air sampling with a nested PCR assay. Appl Environ Microbiol, 1998,64(2):543-548.
[19]   Calsamiglia M, Pijoan C, Trigo A . Application of a nested polymerase chain reaction assay to detect Mycoplasma hyopneumoniae from nasal swabs. J Vet Diagn Invest, 1999,11(3):246-251.
doi: 10.1177/104063879901100307 pmid: 10353356
[20]   Verdin E, Saillard C, Labbé A , et al. A nested PCR assay for the detection of Mycoplasma hyopneumoniae in tracheobronchiolar washings from pigs. Vet Microbiol, 2000,76(1):31-40.
doi: 10.1016/S0378-1135(00)00228-5 pmid: 10925039
[21]   Kurth K T, Hsu T, Snook E R , et al. Use of a Mycoplasma hyopneumoniae nested polymerase chain reaction test to determine the optimal sampling sites in swine. J Vet Diagn Invest, 2002,14(6):463-469.
doi: 10.1177/104063870201400603 pmid: 12423027
[22]   Dubosson C R, Conzelmann C, Miserez R , et al. Development of two real-time PCR assays for the detection of Mycoplasma hyopneumoniae in clinical samples. Vet Microbiol, 2004,102(1-2):55-65.
doi: 10.1016/j.vetmic.2004.05.007 pmid: 15288927
[23]   Strait E L, Madsen M L, Minion F C , et al. Real-time PCR assays to address genetic diversity among strains of Mycoplasma hyopneumoniae. J Clin Microbiol, 2008,46(8):2491-2498.
doi: 10.1128/JCM.02366-07 pmid: 2519509
[24]   Marois C, Dory D, Fablet C , et al. Development of a quantitative real-time TaqMan PCR assay for determination of the minimal dose of Mycoplasma hyopneumoniae strain 116 required to induce pneumonia in SPF pigs. J Appl Microbiol, 2010,108(5):1523-1533.
doi: 10.1111/jam.2010.108.issue-5
[25]   Arsenakis I, Panzavolta L, Michiels A , et al. Efficacy of Mycoplasma hyopneumoniae vaccination before and at weaning against experimental challenge infection in pigs. BMC Vet Res, 2016,12:63.
doi: 10.1186/s12917-016-0685-9 pmid: 4812620
[26]   Arsenakis I, Michiels A , Del Pozo Sacristán R, et al. Mycoplasma hyopneumoniae vaccination at or shortly before weaning under field conditions: a randomised efficacy trial. Vet Rec, 2017,181(1):19.
doi: 10.1136/vr.104075 pmid: 28601840
[27]   Notomi T, Okayama H, Masubuchi H , et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res, 2000,28(12):E63.
doi: 10.1097/RLU.0b013e3181f49ac7 pmid: 10871386
[28]   Li J H, Minion F C, Petersen A C , et al. Loop-mediated isothermal amplification for rapid and convenient detection of Mycoplasma hyopneumoniae. World J Microbiol Biotechnol, 2013,29(4):607-616.
doi: 10.1007/s11274-012-1216-x pmid: 23184577
[29]   保雨 . 猪呼吸道疾病综合征六种病原基因芯片检测方法的建立. 重庆: 西南大学, 2016.
[29]   Bao Y . Development and preliminary application of oligonucleotide microarray for simultaneous detection of six pathogens causing porcine respiratory disease complex. Chongqing: Southwest University, 2016.
[30]   Bereiter M, Young T F, Joo H S , et al. Ross evaluation of the ELISA and comparison to the complement fixation test and radial immunodiffusion enzyme assay for detection of antibodies against Mycoplasma hyopneumoniae in swine serum. Vet Microbiol, 1990,25(2-3):177-192.
doi: 10.1016/0378-1135(90)90075-7 pmid: 2126409
[31]   Roberts D H, Little T W . Serological studies in pigs with Mycoplasma hyopneumoniae. J Comp Pathol, 1970,80(2):211-220.
doi: 10.1016/0021-9975(70)90087-3 pmid: 4988847
[32]   Okada M, Asai T, Futo S , et al. Serological diagnosis of enzootic pneumonia of swine by a double-sandwich enzyme-linked immunosorbent assay using a monoclonal antibody and recombinant antigen (P46) of Mycoplasma hyopneumoniae. Vet Microbiol, 2005,105(3-4) : 251-259.
doi: 10.1016/j.vetmic.2004.11.006 pmid: 15708823
[33]   Fano E, Pijoan C, Dee S , et al. Longitudinal assessment of two Mycoplasma hyopneumoniae enzyme-linked immunosorbent assays in challenged and contact-exposed pigs. J Vet Diag Invest, 2012,24(2):383-387.
doi: 10.1177/1040638711434942 pmid: 22379055
[34]   Feng Z, Bai Y, Yao J , et al. Use of serological and mucosal immune responses to Mycoplasma hyopneumoniae antigens P97R1, P46 and P36 in the diagnosis of infection. Vet J, 2014,202(1):128-133.
doi: 10.1016/j.tvjl.2014.06.019 pmid: 25066030
[35]   Feng Z, Shao G, Liu M , et al. Development and validation of a SIgA-ELISA for the detection of Mycoplasma hyopneumoniae infection. Vet Microbiol, 2010,143(2-4):410-416.
doi: 10.1016/j.vetmic.2009.11.038 pmid: 20053508
[36]   Liu M, Du G, Zhang Y , et al. Development of a blocking ELISA for detection of Mycoplasma hyopneumoniae infection based on a monoclonal antibody against protein P65. J Vet Med Sci, 2016,78(8):1319-1322.
doi: 10.1292/jvms.15-0438
[37]   Pietersa M, Danielsa J, Rovira A . Comparison of sample types and diagnostic methods for in vivo detection of Mycoplasma hyopneumoniae during early stages of infection. Vet Microbiol, 2017,203:103-109.
doi: 10.1016/j.vetmic.2017.02.014
[1] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[2] YUAN Bo-xin,WU Hao,YAN Chun-xiao,LU Juan-e,WEI Zhen-ping,QIAO Jian-jun,RUAN Hai-hua. Progress of Effector Proteins of Pathogenic Bacteria Invading Host Cell Nucleus[J]. China Biotechnology, 2021, 41(7): 81-90.
[3] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[4] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[5] LI Shuai-peng,REN He,AN Zhan-fei,YANG Yan-kun,BAI Zhong-hu. The Development of Chemiluminescence Immunoassay Detection Method for Thrombomodulin[J]. China Biotechnology, 2021, 41(4): 30-36.
[6] ZHANG Xue-jie,TANG Jia-bao,LI Ting-dong,GE Sheng-xiang. Advances in Single Molecule Immunoassay[J]. China Biotechnology, 2021, 41(4): 47-54.
[7] ZHOU Zi-hui,LIU Xiao-xian,HUANG Hao,XIAO Rui,QI Ke-zong,WANG Sheng-qi. Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection[J]. China Biotechnology, 2021, 41(2/3): 70-77.
[8] ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection[J]. China Biotechnology, 2021, 41(10): 73-88.
[9] JIA Xiao-mei,NI Li,LUO Hong-yan,DING Hong-lei,WANG Hao-ju. Research Progress in Pasteurella Multocida Detection Technology[J]. China Biotechnology, 2020, 40(8): 49-54.
[10] HUANG Zhao-hong,HUANG Yun-hong,HUANG Yan-mei,LONG Zhong-er,SHAN Shan. Advances in Detection and Typing of Diarrheal Escherichia coli with PCR[J]. China Biotechnology, 2020, 40(7): 82-90.
[11] ZHANG Ling-mei,NG Hao-ju. Research Progress in Streptococcus suis Detection Technology[J]. China Biotechnology, 2020, 40(4): 84-91.
[12] SUN Heng,WANG Jing,ZENG Ling-gao,WANG Jian-hua. Application of Peptide Nucleic Acid in Virus Detection and Therapy[J]. China Biotechnology, 2020, 40(1-2): 146-153.
[13] ZHU Xiao-li,HUANG Cui,MA Li-li,ZHANG Chao,GONG Yue,ZHAO Wan-yu,ZHAO Xiu-fang,GUO Wen-jiao,PENG Hao,ZHANG Ji,LIANG Hui-gang. Research Advances of Novel Coronavirus Disease (COVID-19)[J]. China Biotechnology, 2020, 40(1-2): 38-50.
[14] HE Meng,ZHANG Guo-lin,LI Yan,HAN Xue-bo,LIU Hong-peng,LI Xin,QIAN Ling-ling,LIU Kun-mei,GUO Le. Soluble Expression of Recombinant Antigen CagL from Helicobacter pylori Pathogenicity Island and Preparation and Analysis of Anti-CagA Polyclonal Antibody[J]. China Biotechnology, 2020, 40(11): 21-27.
[15] Si-nan QIN,Lu-hua TANG,Wen-hui GAO. Preparation of Enrofloxacin Molecular Imprinting Electro- chemical Sensor and Its Application to Rapid Detection of Foods[J]. China Biotechnology, 2019, 39(3): 65-74.