Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (3): 21-28    DOI: 10.13523/j.cb.20190304
    
Efficient Heterologous Expression, Purification and Activity Analysis of Fusion Protein NusA-hRI
Da-wei FU(),Ying-ying SUN,wei XU
Key Laboratory for Food Science and Engineering, Harbin University of Commerce, Harbin 150076, China
Download: HTML   PDF(858KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Human ribonuclease inhibitor (hRI) is an acidic pulping protein that regulates ribonuclease activity. By constructing a recombinant expression vector containing SUMO, IF2, GST, NusA, MsyB, Trx and MBP fusion tags, E.coli BL21 (DE3) was used as a host strain for auto-induction (AI) expression, thereby the expression level of hRI is improved. The expression of hRI was analyzed by MagNi magnetic bead purification and electrophoresis, and the protein with higher purity was obtained by RNase/Sepharose affinity chromatography.The concentration of the fusion protein obtained after purification was 2 960.513mg/L, which was compared with other companies, and its enzyme activity was about 50U/μl, which was successfully used for RNA protection. Purely provide a theoretic-al basis for the application of NusA-hRI.



Key wordsHuman      ribonuclease      inhibitor      Fusion      tags      Auto-induction      Magnetic      bead      me-thod      Affinity      chromatography     
Received: 30 September 2018      Published: 12 April 2019
ZTFLH:  Q816  
Corresponding Authors: Da-wei FU     E-mail: fudaweinovo@163.com
Cite this article:

Da-wei FU,Ying-ying SUN,wei XU. Efficient Heterologous Expression, Purification and Activity Analysis of Fusion Protein NusA-hRI. China Biotechnology, 2019, 39(3): 21-28.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190304     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I3/21

水平 因素
A/温度
(℃)
B/pH C/接种量
(‰)
D/瓶装量
(ml/250)
1 15 6 1 25
2 20 7 2 50
3 25 8 5 75
Table 1 Orthogonal test factor level table
Fig.1 PCR amplification of hRI gene M:DNA marker; 1: hRI gene PCR product
Fig.2 Detection of the recombinant expression vector by restriction enzyme digestion M: DNA molecular marker; 1: PCR amplified hRI gene; 29: BamH I and Not I digested recombinant vectors pNBE I to VIII
Fig.3 Detection of the recombinant expression vector by PCR M: DNA molecular marker; 14: recombinant plasmid pNBE I-hRI; 58: recombinant plasmid pNBE II-hRI; 912: recombinant plasmid pNBE IIII-hRI; 1316: recombinant plasmid pNBE IV-hRI; 1720: recombinant plasmid pNBE V-hRI; 2124: recombinant plasmid pNBE VI-hRI; 2528: recombinant plasmid pNBE VII-hRI; 2932: recombinant plasmid pNBE VIII-hRI
Fig.4 Analysis of hRI I induced expression of 12% polyacrylamide gel M: protein molecular marker; 18: self-inducible recombinant strains of vector pNBE I-VIII, respectively
Fig. 5 Analysis of soluble expression of hRI by 12% polyacrylamide gel M: protein molecular marker; 14: precipitation, supernatant, purification penetration and elution of recombinant plasmid pNBE I; 58: precipitation and supernatant of recombinant plasmid pNBE II , Penetration and elution after purification; 912: Precipitation, supernatant, and penetration and elution of recombinant lysate of pNBE II; 1316: Precipitation and supernatant of recombinant lysate of pNBE III , Penetration and elution after purification; 1720: Precipitation, supernatant, and penetration and elution of recombinant lysate of pNBE IV; 2124: Precipitation and supernatant of recombinant lysate of pNBE V , Penetration and elution after purification; 25-28: Precipitation, supernatant, and penetration and elution of recombinant lysate of pNBE VI; 2629: Precipitation and supernatant of recombinant lysate of pNBE VII , Penetration and elution after purification; 3032: Precipitation, supernatant, and penetration and elution of recombinant cleavage of pNBE VIII
因素 水平 菌体密度
(OD )
蛋白表达量
(%)
蛋白产量
(mg/L)
温度 16 1.56 30.12 305.272
Temperature 20 1.82 38.37 437.113
(℃) 25 2.03 37.13 418.720
30 2.17 35.88 407.335
pH 5 2.42 49.17 534.322
6 2.56 51.22 541.270
7 2.50 53.70 546.339
8 2.63 52.91 540.433
9 2.33 49.03 531.701
接种量 1 2.92 46.42 535.133
Inoculum size 2 3.03 50.07 542.011
(‰) 5 3.37 55.97 539.228
10 3.52 43.31 526.970
20 3.66 34.88 462.034
瓶装量 25 2.99 52.55 562.020
Bottled volume 50 3.28 57.14 587.243
(ml/250 ml) 75 3.11 56.98 577.312
100 3.08 54.77 543.098
150 2.97 49.13 506.771
Table 2 Design and results of single factor experiment on culture conditions
试验序号 A/温度(℃) B/pH C/接种量(‰) D/装瓶量
(ml/250 ml)
蛋白产量(mg/L)
1 1 1 1 1 518.335±0.011
2 1 2 2 2 546.431±0.002
3 1 3 3 3 512.785±0.003
4 2 1 2 3 583.213±0.005
5 2 2 3 1 687.236±0.009
6 2 3 1 2 654.112±0.002
7 3 1 3 2 623.621±0.003
8 3 2 1 3 503.901±0.007
9 3 3 2 1 584.097±0.002
蛋白产量Proteinyield(mg/L) K1 1577.55 1725.17 1676.35 1789.67
K2 1924.56 1737.57 1713.74 1824.16
K3 1711.62 1750.99 1823.64 1599.90
极差R 347.01 25.82 147.29 224.26
Table 3 L9 (34) orthogonal design table and interpretation of results
因素 离差平方和 自由度 F比 P值 显著性
温度 20414.941 2 183.564 0.0054 **
pH 111.214 2 1.000
接种量 3907.999 2 35.139 0.0277 *
瓶装量 9721.893 2 87.416 0.0113 *
误差 111.214 2
Table 4 Variance analysis table of orthogonal test
Fig.6 12% polyacrylamide gel analysis of hRI purified by magnetic beads M: protein molecular marker; 1: precipitate after bacterial cell lysis; 2: supernatant after bacterial cell lysis; 3: purified breakthrough peak; 47: purified hybrid protein rinsing; 812: first to first The hRI obtained by 5 batches eluted
Fig.7 Purification of RNase/Sepharose affinity chromatography
Fig.8 detection of hRI enzyme activity M: DNA molecular marker; 1: Extracted plant leaf RNA; 26: Add RI of M company with volume of 0.4, 0.6, 0.8, 1.0, 1.2 μL, respectively; 710: Add volume of 0.4, 0.6, 0.8 , hRI of 1.0
[1]   葛莹, 孙婧慧, 闫征 , 等. 小鼠核糖核酸酶抑制剂的高效可溶性表达与氧化抗性鉴定. 中国生物工程杂志, 2010,30(11):17-23.
[1]   Ge Y, Sun J H, Yan Z , et al. Efficient soluble expression and oxidative resistance ide-ntification of mouse ribonuclease inhibitors. China Biotechnology, 2010,30(11):17-23.
[2]   杨明洁, 王艇, 樊建慧 , 等. 融合蛋白GST-hRI的可溶性表达及对CCl4引起的急性肝损伤的保护作用. 中华实用诊断与治疗杂志, 2009,23(08):784-787.
[2]   Yang M J, Wang T, Fan J H , et al. Solubility of fusion protein GST-hRI and its protective effect on acute liver injury induced by CCl4. Chinese Journal of Practical Diagnosis and Therapy, 2009,23(08):784-787.
[3]   付大伟, 陈启蒙, 徐伟 . 融合蛋白Trx-T4 DL可溶性表达、纯化与其生物活性应用. 食品工业科技, 2018,39(07):83-89, 96.
doi: 10.13386/j.issn1002-0306.2018.07.017
[3]   Fu D W, Chen Q M, Xu W . Soluble expression, purification and biological application of fusion protein Trx-T4 DL. Science and Technology of Food Industry, 2018,39(07):83-89, 96.
doi: 10.13386/j.issn1002-0306.2018.07.017
[4]   Nie Y, Yan W, Xu Y , et al. High-level expression of Bacillus naganoensis pullulanase from recombinant Escherichia coli with auto-induction: Effect of lac operator. PloS One, 2013,8(10):78-84.
doi: 10.1371/journal.pone.0078416 pmid: 24194930
[5]   Dammicco S, Goux M, Lemair C , et al. Regiospecific radiolabelling of Nanofitin on Ni magnetic beads with [18F] FBEM and in vivo PET studies. Nuclear Medicine & Biology, 2017,51(6):33-39.
doi: 10.1016/j.nucmedbio.2017.04.006 pmid: 28575696
[6]   Makino T, Skretas G, Georgiou G . Strain engineering for improved expression of recombinant proteins in bacteria. Microb Cell Fact, 2011,5(7):10-32.
doi: 10.1186/1475-2859-10-32 pmid: 3120638
[7]   Park J H, Hwang I S, Kim K I , et al. Functional expression of recombinant human ribonuclease/angiogenin inhibitor in stably transformed Drosophila melanogaster S2 cells. Cytotechnology, 2008,57(1):93-99.
doi: 10.1007/s10616-008-9126-3
[8]   Klink T A, Vicentini A M, Hofsteenge J , et al. High-level soluble production and characterization of porcine ribonuclease inhibitor. Protein Expr Purif, 2001,22(2):174-179.
doi: 10.1006/prep.2001.1422 pmid: 11437592
[9]   万鹏 . 猪流行性腹泻病毒抗原基因COE的原核表达与纯化. 郑州: 河南农业大学, 2015.
[9]   Wan P . Prokaryotic expression and purification of porcine epidemic diarrhea virus antigen gene COE. Zhengzhou: Henan Agricultural University, 2015.
[10]   崔倩倩 . 防治小菜蛾高效绿僵菌工程菌的构建. 北京: 中国农业科学院, 2013.
[10]   Cui Q Q . Construction of an engineered fungus for the control of Plutella xylostella. Beijing: Chinese Academy of Agricultural Sciences, 2013.
[11]   顾娟, 劳勋, 金明飞 , 等. 人胰高血糖素样肽-1突变体融合蛋白在大肠杆菌中的自诱导表达优化. 微生物学通报, 2010,37(05):726-731.
[11]   Gu J, Lao X, Jin M F , et al. Optimization of auto-induction expression of human glucagon-like peptide-1 mutant fusion protein in Escherichia coli. Bulletin of Microbiology, 2010,37(05):726-731.
[12]   付大伟, 陈启蒙, 孙莹莹 , 等. T4 DNA 聚合酶在大肠杆菌中高效表达、纯化及部分生物学活性研究. 食品科学, 2018,39(16):214-220.
doi: 10.7506/spkx1002-6630-201816031
[12]   Fu D W, Chen Q M, Sun Y Y , et al. High expression, purification and partial biological activity of T4 DNA polymerase in E.coli. Food Science, 2018,39(16):214-220.
doi: 10.7506/spkx1002-6630-201816031
[13]   Bernier S C, Cantin L, Salesse C . Systematic analysis of the expression, solubility and purification of a passenger protein in fusion with different tags. Protein Expression and Purification, 2018,152(7):92-106.
doi: 10.1016/j.pep.2018.07.007 pmid: 30036588
[14]   Blackburn P, Wilson G, Moore S . Ribonuclease inhibitor from human placenta. Purification and properties. J Biol Chem, 1977,252(16):5904-5910.
doi: 10.1007/BF00743152 pmid: 560377
[15]   Guo W H, Cao L, Jia Z J . High level soluble production of functional ribonuclease inhibitor in Escherichia coli by fusing it to soluble partners. Protein Expression and Purification, 2011,77(2):185-192.
doi: 10.1016/j.pep.2011.01.015
[16]   刘皓熙 . TAT-MT融合蛋白在大肠杆菌中的高效表达、纯化及体外活性初步测定. 广州:暨南大学, 2011.
[16]   Liu H X . High-level expression, purification and in vitro activity determination of TAT-MT fusion protein in Escherichia coli. Guangzhou: Jinan University, 2011.
[1] ZHANG Ling,CAO Xiao-dan,YANG Hai-xu,LI Wen-lei. The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up[J]. China Biotechnology, 2021, 41(6): 38-44.
[2] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[3] CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression[J]. China Biotechnology, 2021, 41(5): 8-16.
[4] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[5] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[6] LIU Mei-qin,GAO Bo,JIAO Yue-ying,LI Wei,YU Jie-mei,PENG Xiang-lei,ZHENG Yan-peng,FU Yuan-hui,HE Jin-sheng. Long Non-coding RNA Expression Profile in A549 Cells Infected with Human Respiratory Syncytial Virus[J]. China Biotechnology, 2021, 41(2/3): 7-13.
[7] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[8] TANG Yue-wei,LIU Zhi-ping. Drug-target Affinity Prediction Based on Deep Learning and Multi-layered Information Fusion[J]. China Biotechnology, 2021, 41(11): 40-47.
[9] Chen-yang ZHANG,Chang-chun HEI,Shi-lin YUAN,Yu-jia ZHOU,Mei-ling CAO,Yi-xin QIN,Xiao YANG. SIRT3 Inhibits Mitophagy and Alleviates Neuronal Oxygen Deprivation/Reoxygenation Injury Aggravated by High Glucose[J]. China Biotechnology, 2021, 41(11): 1-13.
[10] XIAO Yun-xi,ZHANG Jun-he,YANG Wen-wen,CHENG Hong-wei. Research Progress of Human Diploid Cells for Vaccine Production[J]. China Biotechnology, 2021, 41(11): 74-81.
[11] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[12] ZHANG Sai,XIANG Le,LI Lin-hai,LI Hui-jun,WANG Gang,QIAN Chun-gen. Development and Performance Evaluation of A Rapid IgM-IgG Combined Antibody Test for 2019 Novel Coronavirus Infection[J]. China Biotechnology, 2020, 40(8): 1-9.
[13] JIN Lu,ZHOU Hang,CAO Yun,WANG Zhou-shou,CAO Rong-yue. Research on Applications of High-Throughput Perfusion Models in Bioprocessing Development[J]. China Biotechnology, 2020, 40(8): 63-73.
[14] ZHOU Qin,WANG Shuang,ZHANG Ting,LI Shan-gang,CHEN Yong-chang. T158M Single Base Editing of MECP2 Gene in Murine and Rhesus Monekey’s Embryos[J]. China Biotechnology, 2020, 40(6): 31-39.
[15] QIN Xu-ying,YANG Hong-jiang. Research Progress on Techniques for Separation, Purification of Bacteriophages[J]. China Biotechnology, 2020, 40(5): 78-83.