Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (12): 41-48    DOI: 10.13523/j.cb.20181206
Orginal Article     
Screening of Anti-Aflatoxin B1 ScFv Based on Phage Display Technology and Analysis of Its Protein Structure
PANG Qian,CHEN Jing,WANG Xiao-hong,WANG Jia()
College of Food Science and technology, Huazhong Agricultural University, Wuhan 430070, China
Download: HTML   PDF(1124KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aflatoxin B1 (AFB1) is a mycotoxin which has highly toxic and highly polluted. It is of great significance for AFB1 to establish an efficient, accurate and rapid detection method. Phagemid/helper phage system is one of the most common used system for single-chain antibody fragment(scFv) libraries construction. The “panning-elution” strategy is an effective method for screening ligands with high affinity. Combined with homology modeling and molecular docking, the key amino acid binding sites between antibody and antigen were analyzed to provide the basis for genetically modifying antibodies. In this study, the heavy chain variable regions and light chain variable regions were amplified from the spleen cells of AFB1-BSA immunized mice. Then assembled scFv fragment was inserted into the phagemid pCANTAB5e to construct a phage display single-chain antibody library. Using different concentrations of AFB1-OVA as coating antigens, anti-AFB1 scFv was isolated from this library, which affinity constant is 8×10 5L/mol. According to homology modeling and molecular docking, Tyr33, Ser52, and Tyr102 play a key role in binding with AFB1 under π-π conjugated bonds, hydrogen bonds, and van der Waals forces, respectively.



Key wordsAFB1      Single-chain antibody fragment      Phagemid/helper phage display      Homology modeling      Molecular docking     
Received: 27 June 2018      Published: 10 January 2019
ZTFLH:  Q78  
Corresponding Authors: Jia WANG     E-mail: wangjia@mail.hzau.edu.cn
Cite this article:

PANG Qian,CHEN Jing,WANG Xiao-hong,WANG Jia. Screening of Anti-Aflatoxin B1 ScFv Based on Phage Display Technology and Analysis of Its Protein Structure. China Biotechnology, 2018, 38(12): 41-48.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181206     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I12/41

Fig.1 Amplifying VH and VL gene and construction of scFv
筛选次数 AFB1-OVA浓度(μg/ml) 噬菌体投入量(cfu/ml) 噬菌体捕获量(cfu/ml) 富集度
1 20 2.1×1013 5×102 -
2 20 1.3×1013 9×102 2.875
3 20 1.5×1013 1.2×103 1.153
4 10 2.5×1013 1.6×103 0.8
5 10 1.8×1013 3×103 2.61
Table 1 The enrichment of phage display anti-AFB1 scFv by immunoaffinity panning
Fig.2 Amino acid sequences of anti-AFB1 scFv (underlined part was the Linker sequence)
Fig.3 SDS-PAGE analysis for expression of scFv-A/B M:Protein marker; 1:Expression of scFv
Fig.4 3D model of anti-AFB1 scFv (a) and its molecular docking model with AFB1 (b)
Fig.5 2D molecular docking model scFv and AFB1
抗体名称 抗体类型 构建方法 与AFB1的结合方式 参考文献
Nb-G8 纳米抗体 噬菌体展示纳米抗体免疫文库 Thr32、Ile33、Phe49、Typ54 、Tyr106 和 Val112 等氨基酸残基可能直接参与抗原识别表位的形成 [32]
scFv-H4 单链抗体 Tomlinson I+J文库 AFB1主要被轻链上的Ala91、Pro95、Phe98和重链上的Lys96、Thr97、His95构成疏水腔包裹,双呋喃环与Asp之间形成氢键 [33]
1C11 单克隆抗体 杂交瘤细胞株 1C11重链上的Ser49和Phe103以氢键与疏水作用与AFB1结合 [34]
scFv 单链抗体 抗AFB1单克隆抗体杂交瘤细胞株 在三级结构中连接肽将VH和VL区域牵拉而相互靠近,形成典型沟槽结构,是scFv的抗原结合区域 [35]
scFv 单链抗体 噬菌粒-辅助噬菌体展示系统构建的单链抗体文库 与抗原AFB1结合时,scFv中Tyr33、Ser52和Tyr102起关键作用,分别以π-π共轭键、氢键和范德华力与AFB1结合 本研究
Table 2 Comparison of the binding mode of different antibodies to AFB1
[1]   刘爱平, 李诚, 刘书亮 , 等. 抗黄曲霉毒素B1单链抗体在Sf9昆虫细胞中的表达与性质分析. 中国生物工程杂志, 2016,36(5):40-45.
[1]   Liu A P, Li C, Liu S L , et al. Expression and characterization of anti-AFB1 scFv expressed in Sf9 cell. China Biotechnology, 2016,36(5):40-45.
[2]   Cancer I A F O. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. Geneva: World Health Organization, 1993: 489-521.
[3]   Liu J W, Lu C C, Liu B H , et al. Development of novel monoclonal antibodies-based ultrasensitive enzyme-linked immunosorbent assay and rapid immunochromatographic strip for aflatoxin B1 detection. Food Control, 2016,59:700-707.
doi: 10.1016/j.foodcont.2015.06.038
[4]   Shen X, Chen J, Li X , et al. Monoclonal antibody-based homogeneous immunoassay for three banned agonists and molecular modeling insight. Food & Agricultural Immunology, 2017,28(6):1438-1449.
doi: 10.1080/09540105.2017.1347149
[5]   Swain M D, Anderson J P, Serrano-González J , et al. Immunodiagnostic reagents using llama single domain antibody-alkaline phosphatase fusion proteins. Analytical Biochemistry, 2011,417(2):188-194.
doi: 10.1016/j.ab.2011.06.012 pmid: 21756867
[6]   Kijanka M, Dorresteijn B, Oliveira S , et al. Nanobody-based cancer therapy of solid tumors. Nanomedicine, 2015,10(1):161-174.
doi: 10.2217/nnm.14.178 pmid: 25597775
[7]   Chen J, He Q H, Xu Y , et al. Nanobody medicated immunoassay for ultrasensitive detection of cancer biomarker alpha-fetoprotein. Talanta, 2016,147:523-530.
doi: 10.1016/j.talanta.2015.10.027 pmid: 26592642
[8]   温杰, 宋琳琳, 张莹 , 等. 稳定表达Aβ特异性单链抗体的哺乳动物细胞株构建和功能研究. 中国生物工程杂志, 2017,37(2):1-7.
[8]   Wen J, Song L L, Zhang Y , et al. Construction and function of stable mammalian cell lines expressing the Aβ-specific single chain fragment variants. China Biotechnology, 2017,37(2):1-7.
[9]   Hu Z Q, Li H P, Liu J L , et al. Production of a phage-displayed mouse scFv antibody against fumonisin B1 and molecular docking analysis of their interactions. Biotechnology & Bioprocess Engineering, 2016,21(1):134-143.
doi: 10.1007/s12257-015-0495-0
[10]   Edupuganti S R, Edupuganti O P , O’Kennedy R. Biological and synthetic binders for immunoassay and sensor-based detection: generation and characterisation of an anti-AFB(2) single-chain variable fragment (scFv). World Mycotoxin Journal, 2013,6(3):273-280.
[11]   Wang R, Gu X, Zhuang Z , et al. Screening and molecular evolution of a single chain variable fragment antibody (scFv) against citreoviridin toxin. J Agric Food Chem, 2016,64(40):7640-7648.
doi: 10.1021/acs.jafc.6b02637 pmid: 27622814
[12]   Rodriguez R L, Denhardt D T . Vectors: a survey of molecular cloning vectors and their uses. Butterworfh:Heinemann, 1988: 467-492.
doi: 10.1016/0168-9525(88)90174-6 pmid: 3207931
[13]   Daly S J, Dillon P P, Manning B M , et al. Production and characterization of murine single chain Fv antibodies to aflatoxin B1 derived from a pre-immunized antibody phage display library system. Food and Agricultural Immunology, 2002,14(4):255-274.
doi: 10.1080/0954010021000096373
[14]   Hu Z Q, Li H P, Liu J L , et al. Production of a phage-displayed mouse scFv antibody against fumonisin B1 and molecular docking analysis of their interactions. Biotechnology & Bioprocess Engineering, 2016,21(1):134-143.
doi: 10.1007/s12257-015-0495-0
[15]   Zhao J X, Yang L, Gu Z N , et al. Stabilization of the single-chain fragment variable by an interdomain disulfide bond and its effect on antibody affinity. International Journal of Molecular Sciences, 2010,12(1):1-11.
doi: 10.3390/ijms12010001 pmid: 21339972
[16]   Wang J, Li H, Shelver W L , et al. Development of a monoclonal antibody-based, congener-specific and solvent-tolerable direct enzyme-linked immunosorbent assay for the detection of 2,2',4,4'-tetrabromodiphenyl ether in environmental samples. Analytical & Bioanalytical Chemistry, 2011,401(7):2249-2258.
doi: 10.1007/s00216-011-5283-x pmid: 21822776
[17]   沈倍奋, 陈志南, 刘民培 . 重组抗体. 北京:科学出版社, 2005.
[17]   Shen B F, Chen Z N, Liu M P. Recombinant antibody. Beijing: Science Press, 2005.
[18]   庞倩, 马榆, 李诚 , 等. 基于CDR2和CDR3区随机突变筛选抗黄曲霉毒素B1单域重链抗体的研究. 中国生物工程杂志, 2016,36(7):21-26.
[18]   Pang Q, Ma Y, Li C , et al. Screening of anti-aflatoxin B1 single domain heavy chain antibody based on random mutation of CDR2 and CDR3 regions. China Biotechnology, 2016,36(7):21-26.
[19]   Ebel G D, Dupuis A P, Nicholas D . Detection by enzyme-linked immunosorbent assay of antibodies to west nile virus in birds. Emerging Infectious Diseases, 2002,8(9):979-982.
doi: 10.3201/eid0809.020152 pmid: 2732549
[20]   Beatty J D, Beatty B G, Vlahos W G . Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. Journal of Immunological Methods, 1987,100(1):173-179.
doi: 10.1016/0022-1759(87)90187-6 pmid: 2439600
[21]   陈英, 庄延 . 活体电穿孔法基因导入技术. 中国生物工程杂志, 2003,23(5):104-108.
[21]   Chen Y, Zhuang Y . In vivo transfer with electroporation. China Biotechnology, 2003,23(5):104-108.
[22]   孙巍, 林珩, 花芳 , 等. 优化宿主菌在重组系统中构建大容量天然噬菌体抗体库. 药学学报, 2013,48(1):66-70.
[22]   Sun W, Lin H, Hua F , et al. Optimizing the host bacteria to make a large naive phage antibody library in the recombination system. Acta Pharmaceutica Sinica, 2013,48(1):66-70.
[23]   蒋家豪, 孙福谋, 韩月 , 等. 噬菌体展示全人源抗GPC3的单链抗体的筛选及鉴定. 药学学报, 2017,52(12):1877-1883.
[23]   Jiang J H, Sun F M, Han Y , et al. Screening and characterization of human anti-GPC3 single chain Fv antibody fragment selected by phage display. Acta Pharmaceutica Sinica, 2017,52(12):1877-1883.
[24]   佟振华, 钱尼良, 张晶 , 等. 人源抗转铁蛋白受体单链抗体的筛选及其构建与表达. 生物技术通讯, 2016,27(3):358-361.
[24]   Tong Z H, Qian N N, Zhang J , et al. Screening, construction and expression of human anti-TfR scFv antibody. Letters in Biotechnology, 2016,27(3):358-361.
[25]   Liu A, Yang Y, Chen W , et al. Expression of V H-linker-V L, orientation-dependent single-chain Fv antibody fragment derived from hybridoma 2E6 against aflatoxin B1, in Escherichia coli. Journal of Industrial Microbiology & Biotechnology, 2015,42(2):255-262.
doi: 10.1007/s10295-014-1570-9 pmid: 25540048
[26]   Nossal G J V . The molecular and cellular basis of affinity maturation in the antibody response. Cell, 1992,68(1):1-2.
doi: 10.1016/0092-8674(92)90198-L pmid: 1531039
[27]   Unkauf T, Hust M, Frenzel A . Antibody affinity and stability maturation by error-prone PCR. Methods Mol Biol, 2018,1701:393-407.
doi: 10.1007/978-1-4939-7447-4_22 pmid: 29116518
[28]   D’Angelo S, Ferrara F, Naranjo L , et al. Many routes to an antibody heavy-chain CDR3: necessary, yet insufficient, for specific binding. Frontiers in Immunology, 2018,9:395-408.
doi: 10.3389/fimmu.2018.00395
[29]   Yan J, Li G, Hu Y , et al. Construction of a synthetic phage-displayed Nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. Journal of Translational Medicine, 2014,12(1):343.
doi: 10.1186/s12967-014-0343-6 pmid: 25496223
[30]   孙丽娜, 刘洋, 李川 , 等. 人源抗狂犬病毒糖蛋白Ⅲ号表位链置换基因工程抗体研究. 病毒学报, 2016,32(4):393-398.
[30]   Sun L N, Liu Y, Li C , et al. Generation of human scFv antibodies for antigenic site Ⅲ of rabies virus glycoprotein from antibody libraries by chain shuffling. Chinese Journal of Virology, 2016,32(4):393-398.
[31]   卢筱华, 杨冬华, 周旻 , 等. 抗肝癌单链抗体体外亲和力成熟的改造及意义. 中华肝脏病杂志, 2006,14(3):192-195.
[31]   Lu X H, Yang D H, Zhou M , et al. Affinity maturation of a single-chain antibody against hepatocellular carcinoma. Chin J Hepatol, 2006,14(3):192-195.
[32]   曹冬梅 . 抗黄曲霉毒素B1纳米抗体的免疫学性能分析及其体外定点改造. 江西:南昌大学, 2016.
[32]   Cao D M . Immunoassay of Nanobody against aflatoxin B1 and its modification by site-directed mutagenesis in vitro. Jiangxi: Nanchang University, 2016.
[33]   杨炼 . 抗黄曲霉毒素B1的单链抗体的筛选、表达与改造. 江苏:江南大学, 2010.
[33]   Yang L . Improvement of anti-aflatoxin B1 single chain variable fragment. Jiangsu: Jiangnan University, 2010.
[34]   Li X, Li P W, Zhang Q , et al. Molecular characterization of monoclonal antibodies against aflatoxins: a possible explanation for the highest sensitivity. Analytical Chemistry, 2012,84(12):5229-5235.
doi: 10.1021/ac202747u pmid: 22548609
[35]   马兰, 刘爱平, 王佳 , 等. 抗黄曲霉毒素B1单链抗体基因克隆及其结构分析. 南方农业学报, 2017,48(11):2064-2070.
[35]   Ma L, Liu A P, Wang J , et al. Anti-aflatoxin B1 single chain antibody: gene cloning and structure analyzing. Journal of Southern Agriculture, 2017,48(11):2064-2070.
[1] YANG Tian-ran, WU Shi-jie, XIN Ming-xiu. Study on Daptomycin as a New Trypsin Activator[J]. China Biotechnology, 2017, 37(10): 26-32.
[2] PANG Qian, MA Yu, LI Cheng, LIU Yun-tao, LIU Shu-liang, WANG Xiao-hong, LIU Ai-ping. Screening of Anti-aflatoxin B1 Single Domain Heavy Chain Antibody Based on Random Mutation of CDR2 and CDR3 Regions[J]. China Biotechnology, 2016, 36(7): 21-26.
[3] LIU Ai-ping, LI Cheng, LIU Shu-liang, WANG Xiao-hong, CHEN Fu-sheng. Expression and Characterization of Anti-AFB1 scFv Expressed in Sf9 Cell[J]. China Biotechnology, 2016, 36(5): 40-45.
[4] ZHANG Chen-chen, MENG Zhi-zhong, LU Yuan-fang, CHEN Xin, LI Shan. Homology Modeling and Structure Analysis of SoxYZ: A Carrier of Sulfur Compounds from Thiobacillus denitrificans[J]. China Biotechnology, 2015, 35(7): 68-75.
[5] ZHANG Ying-tan, YANG Li-rong, XU Gang, WU Jian-pin. Studying of Chiral Recognition Process of R-2-CPA Dehalogenase from Pseudomonas sp. ZJU26[J]. China Biotechnology, 2014, 34(06): 16-22.
[6] LIU Peng, YANG Chun-jiao, YANG Li-rong, XU Gang, WU Jian-ping. Directed Evolution and Application of S-2-CPA Dehalogenase[J]. China Biotechnology, 2012, 32(05): 66-72.
[7] HU Feng-juan, WANG Xu-man, LIU Da-ling, YAO Dong-sheng. Directional Molecular Rebuilding of β-mannanase MAN47 with Trypsin-resistance from Armillariella tabescens[J]. China Biotechnology, 2011, 31(10): 75-82.