Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (7): 68-75    DOI: 10.13523/j.cb.20150710
    
Homology Modeling and Structure Analysis of SoxYZ: A Carrier of Sulfur Compounds from Thiobacillus denitrificans
ZHANG Chen-chen, MENG Zhi-zhong, LU Yuan-fang, CHEN Xin, LI Shan
School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
Download: HTML   PDF(1609KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Sox system of Thiobacillus denitrificans plays a vital role in the metabolism of sulfur compounds, SoxYZ coding by the sulfur oxidizing gene cluster (sox) is known to be a sulfur covalently binding protein, which binds sulfur compounds to the other enzymes. The structure of SoxYZ heterodimer, the carrier of sulfur compounds, is constructed by using homology modeling and is proved to be reliable. Analysis of protein interactions find that the Solvent Accessible Surface(SAS) of SoxYZ is 10 922.9Å2, hydrophobicity is 50.85%; the interface between subunits SoxY and SoxZ contains a total of 12 hydrogen bonds and a pi bond which maintain the stability of the three-dimensional structure; the electrostatic potential of SoxYZ surface is obviously complementary, the VDW interaction energy and electrostatic interaction energy of residues at the interface is -80.925 13kcal/mol and -323.856 57kcal/mol, respectively which showed that the electrostatic interaction energy was the main driving force to form the heterodimer and the residues Thr28, Arg31, Lys32, Ser64, Gly65, Val66, Ser67 of SoxZ played an important role in the stability of active site of SoxY.



Key wordsThiobacillus denitrificans      Heterodimer      Homology modeling      Protein interaction     
Received: 15 January 2015      Published: 25 July 2015
ZTFLH:  Q71  
Cite this article:

ZHANG Chen-chen, MENG Zhi-zhong, LU Yuan-fang, CHEN Xin, LI Shan. Homology Modeling and Structure Analysis of SoxYZ: A Carrier of Sulfur Compounds from Thiobacillus denitrificans. China Biotechnology, 2015, 35(7): 68-75.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150710     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I7/68


[1] 贡俊,张肇铭.脱氮硫杆菌氧化硫化氢过程中的生物氧化和化学氧化.环境科学学报,2006,26(3):477-482. Gong J, Zhang Z M. Biological and chemical oxidation during oxidation of hydrogen sulfide by Thiobacillus denitrificans. Acta Scientiae Circumstantiae, 2006,26(3):477-482.

[2] 李绪.脱氮硫杆菌在工业废气和废水脱硫脱氮中的应用研究.天津:天津大学,化工学院,2008. Li X. Study on treatment of Thiobacillus denitrificans in flue gas and waste water denitrification and desulfurization processes. Tianjin: Tianjin University, School of Chemical Engineering and Technology,2008.

[3] Friedrich C G, Bardischewsky F, Rother D, et al. Prokaryotic sulfur oxidation. Current Opinion in Microbiology, 2005,8(3): 253-259.

[4] 郑彦彬,王威.生物脱硫技术在煤化工领域应用的可能性.煤化工,2006,34(2):54-56. Zheng Y B, Wang W. Possible applications of biological desuiphurization technology in coal chemical Industry. Coal Chemical Industry, 2006,34(2):54-56.

[5] 张忠智,鲁莽,魏小芳,等.脱氮硫杆菌的生态特性及其应用.化学与生物工程,2005, 22(2):52-54. Zhang Z Z, Lu M, Wei X F, et al. Ecological characters and application of Thiobacillus denitrificans. Chemistry & Bioengineering, 2005,22(2):52-54.

[6] Sauvé V, Bruno S, Berks B C, et al. The SoxYZ complex carries sulfur cycle intermediates on a peptide swinging arm. The Journal of Biological Chemistry, 2007,282(32):23194-23204.

[7] Mohapatra B R, Gould W D, Dinardo O, et al. An overview of the biochemical and molecular aspects of microbial oxidation of inorganic sulfur compounds. CLEAN-Soil Air Water, 2008, 36(10-11): 823-829.

[8] 张志刚.耐热β-半乳糖苷酶的结构分析及同源建模.现代食品科技,2013,29(4):706-709. Zhang Z G. Structure analysis and homology modeling of thermostable β-galactosidase. Modern Food Science and Technology, 2013,29(4):706-709.

[9] 李军.纤维素酶E4的同源建模和分子对接研究.广州:华南理工大学,生物科学与工程学院,2012. Li J. Study on Homology Modeling and Molecular-docking Simulation of Cellulase E4. Guangzhou: South China University of Technology, School of Bioscience & Bioengineering, 2012.

[10] Beller H R, Chain PS G, Letain T E, et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. Journal of Bacteriology, 2006,188(4): 1473-1488.

[11] 徐钰.几类重要蛋白质的分子动力学模拟研究.长春:吉林大学,化学学院,2012. Xu Y. Theoretical Studies on the Catalytic Mechanisms of Several Important Enzymes. Changchun: Jilin University, College of Chemistry,2012.

[12] Bagchi A, Ghosh T C. A structural study towards the understanding of the interactions of SoxY, SoxZ, and SoxB, leading to the oxidation of sulfur anions via the novel global sulfur oxidizing (sox) operon. Biochemical and Biophysical Research Communications, 2005,335(2):609-615.

[13] Ray S, Bagchi A. Structural analysis of the mode of interactions of SoxB protein with SoxYZ complex from Allochromatium vinosum in the global sulfur oxidation cycle. Computational Molecular Biology, 2013,3(1):1-5.

[14] 李书祥.柑橘绿霉菌CYP51的同源模建与分子对接模拟研究.武汉:华中师范大学,生命科学学院,2012. Li S X. Homology Modeling and Molecular Docking Studies of CYP51 from Penicillium digitatum. Wuhan: Central China Normal University, School of Life Sciences,2012.

[15] Laskowski R A, MacArthur M W, Moss D S, et al. PROCHECK-a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography,1993,26(2):283-291.

[16] 李霞.克雷伯杆菌中FNR蛋白三级结构模建及二聚作用研究.青岛:青岛科技大学,化工学院,2012. Li X. Tertiary Structure Modelling and Dimerization Study of the FNR Protein from Klebsiella pneumoniae. Qingdao: Qingdao University of Science & Technology, College of Chemical Engineering,2012.

[17] 陈正隆,徐为人,汤立达.分子模拟的理论与实践.北京:化学工业出版社,2007. Chen Z L, Xu W R, Tang L D. Theory and Practice of Molecular Modeling. Beijing: Chemical Industry Press,2007.

[18] 马晓慧.蛋白质二聚体相互作用和识别的计算机模拟.北京:北京工业大学,生命科学与生物工程学院,2012. Ma X H. Computer Simulation of the Interaction and Recognition of Protein Dimmers. Beijing: Beijing University of Technology, School of Life Sciences & Bioengineering,2012.

[1] Yue ZHAO,Hao WU,Jian-jun QIAO. Research on the Regulatory Mechanisms of Bacterial Cell Wall Growth[J]. China Biotechnology, 2018, 38(8): 92-99.
[2] PANG Qian,CHEN Jing,WANG Xiao-hong,WANG Jia. Screening of Anti-Aflatoxin B1 ScFv Based on Phage Display Technology and Analysis of Its Protein Structure[J]. China Biotechnology, 2018, 38(12): 41-48.
[3] MENG Kun, HE Qing-yu, WANG Tong, LU Shao-hua. The Study of Protein-protein Interactions Using a Flow Cytometry-based FRET Technology in Living Cells[J]. China Biotechnology, 2017, 37(5): 45-51.
[4] HUANG Xin-yuan, FAN Hong-bo, ZOU Li-ping. Progress in Protein Fragment Complementation Assay[J]. China Biotechnology, 2013, 33(11): 99-105.
[5] SHEN Zi-yue, LV Zhe, QIN Zong-hua, LI Ren-qiang. Applying Pull-down Technique to Study Interactional Proteins with Shrimp Allergen[J]. China Biotechnology, 2012, 32(11): 81-85.
[6] SHEN Zi-yue, LV Zhe, QIN Zong-hua, LI Ren-qiang. Applying Pull-down Technique to Study Interactional Proteins with Shrimp Allergen[J]. China Biotechnology, 2012, 32(11): 81-85.
[7] GUO Fen, LIN Pi-rong, LI Yue-qin, SU Xian-li, WANG Ding-ding, ZHOU Tian-hong. Interaction among BRPF1, Its Novel Transcript BRPF2 and RHOX5 Protein[J]. China Biotechnology, 2012, 32(09): 15-21.
[8] CHEN Si-qun, SUN Zi-cai, CHEN Jian-jun, CHEN Xiao-hui. Applications of the Carbohydrate-Protein Interaction on Immobilization of Enzyme and on Recognition and Separation of Proteins[J]. China Biotechnology, 2012, 32(04): 83-88.
[9] WU Li, YANG Cheng-hong, DENG Si-si, ZHOU Yu-bo, QIAN Min, ZANG Yi. Screening of AMPK Interacted Proteins by Yeast Two Hybrid System[J]. China Biotechnology, 2012, 32(02): 1-7.
[10] LI Yu-ye, LI Xing-xing, SUN Shuang-shuang, ZOU Zheng-yu, ZHANG Yun-yuan, DUAN Liang, YE Li-wei, WU Rui, YANG Xia, HE Tong-chuan, ZHOU Lan. Effects and Possible Mechanism of Protein S100A6 on β-catenin[J]. China Biotechnology, 2011, 31(11): 18-23.
[11] HU Feng-juan, WANG Xu-man, LIU Da-ling, YAO Dong-sheng. Directional Molecular Rebuilding of β-mannanase MAN47 with Trypsin-resistance from Armillariella tabescens[J]. China Biotechnology, 2011, 31(10): 75-82.
[12] . Prokaryotic Expression, Purification of human 14-kDa phosphohistidine phosphatase and its interacting protein study in vitro[J]. China Biotechnology, 2010, 30(07): 0-0.
[13] SHI Si-Kang, TU Jin-Chi, GU Li. Expression, Purification of N-terminus Fusion Human MCM7 and a Study on Its Interaction with AR[J]. China Biotechnology, 2010, 30(02): 44-48.
[14] GUO Fen, LI Shi-Jian, OU Chu-Fang, CHU Pan-Hui, LI Ru-Qin, ZHANG Xin, ZHOU Tian-Hong. Prokaryotic Expression,Purification of Two Truncated Mutants of RHOX5 and Their Interaction with MDFIC Protein[J]. China Biotechnology, 2009, 29(12): 18-23.
[15] 刘子杰,翁亚光,李素彦,施琼,蔡燕,刘斌,张燕,阎琛. Explore the Structural Domains Of CENP-E Protein Interacting with Mps1 protein by FRET method[J]. China Biotechnology, 2009, 29(04): 28-34.