Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (11): 32-41    DOI: 10.13523/j.cb.20181105
    
Event-specific Detection Methods of Genetically Modified Rice BPL9K-2
Shuai CUI1,2,Zuo-ping WANG1,3,Jiang-hui YU1,Guo-ying XIAO1,**()
1. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture,Chinese Academy of Sciences, Changsha 410125, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing Agro-biotechnology Research Center,Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
Download: HTML   PDF(1443KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The hiTAIL-PCR (high-efficiency thermal asymmetric interlaced PCR) was adopted to study the characteristic of insertion site in genetically modified rice BPL9K-2. As a result, a 450bp fragment of left flanking sequence was discovered. By comparison with rice genome database, the insertion site of exogenous gene located on No. 1037765 of chromosome 10 was found. A 485bp fragment of right flanking sequence was amplified using the primers that were designed according to the sequence of integration site on rice genome and right sequence of exogenous gene. The event-specific PCR detection method was developed based on the left and right flanking sequences, which produced 449bp and 485bp fragment respectively in genetically modified rice BPL9K-2, specifically. The event-specific PCR detection method, with high specificity and sensitivity, could detect the genetically modified ingredients in samples containing 0.1% genomic DNA of BPL9K-2. Based on the flanking sequence, a tri-primer PCR method was developed to identify its genotype of exogenous gene in segregation generation quickly and accurately. The above methods established in this research provide technical supports for the utilization and detection of genetically modified rice BPL9K-2.



Key wordsGenetically modified rice      Flanking sequence      Event-specific detection      Genotyping     
Received: 26 April 2018      Published: 06 December 2018
ZTFLH:  Q812  
Corresponding Authors: Guo-ying XIAO     E-mail: xiaoguoying@isa.ac.cn
Cite this article:

Shuai CUI,Zuo-ping WANG,Jiang-hui YU,Guo-ying XIAO. Event-specific Detection Methods of Genetically Modified Rice BPL9K-2. China Biotechnology, 2018, 38(11): 32-41.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181105     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I11/32

引物名称
Primer
引物序列(5'-3')
Sequence
LAD1 ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA
LAD2 ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT
LAD3 ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA
LAD4 ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT
AC1 ACGATGGACTCCAGAG
LB-0a CAAGCACGGGAACTGGCATG
LB-1a CCTGCCCGTCACCGAGATTT
LB-2a GTGAGTAGTTCCCAGATAAG
LB-F GAAGGATTTGACGAGCGAGC
LB-R CTGGCATGACGTGGGTTTCT
RB-F CCAGCTCGAATTTCCCCGAT
RB-R AGCACAAATGTGGACGCTCA
Table 1 The primer sequence for hiTAIL-PCR and event-specific PCR
Fig.1 The hiTAIL-PCR results of left flanking sequence of BPL9K-2 M: DL 2000 DNA marker; 1: The secondary TAIL-PCR products of 9K19-5 (AC1/LB-1a); 2: The tertiary TAIL-PCR products of 9K19-5 (AC1/LB-2a); 3: The secondary TAIL-PCR products of BPL9K-2 (AC1/LB-1a); 4: The tertiary TAIL-PCR products of BPL9K-2 (AC1/LB-2a); LAD1-LAD4: Arbitrary primers
Fig.2 The left flanking sequence of BPL9K-2 and characteristics of junction region(a) The left flanking sequence of BPL9K-2. The underlined part is the left sequence of T-DNA (235-450bp), and the rest is rice genome sequence (b) Characteristics of junction region at the left border Vector: The left sequence of T-DNA including its left border; BPL9K-2: The obtained left flanking sequence of BPL9K-2; AP014966.1: The rice genomic sequence on chromosome 10 where the T-DNA was inserted into; The arrowheads indicate the splicing site of T-DNA and rice genome
Fig.3 The right flanking sequence of BPL9K-2 and characteristics of junction region(a) The right flanking sequence of BPL9K-2. The underlined part is the right sequence of T-DNA (310-485bp), and the rest is rice genome sequence (b) Characteristics of junction region at the right border Vector: The right sequence of T-DNA including its right border; BPL9K-2: The obtained right flanking sequence of BPL9K-2; AP014966.1: The rice genomic sequence on chromosome 10 where the T-DNA was inserted into; The arrowheads indicate the splicing site of T-DNA and rice genome
Fig.4 The insertion site of T-DNA in genome of genetically modified rice BPL9K-2
Fig.5 Event-specific qualitative PCR detection based on the left and the right flanking sequence(a) Event-specific qualitative PCR detection based on the left flanking sequence of BPL9K-2 (b) Event-specific qualitative PCR detection based on the right flanking sequence of BPL9K-2 M: DL 2000 DNA marker; B: Blank control; 3: Genetically modified rice BPL9K-2; 1, 2, 6-11: Conventional rice 9K19-1, 9K19-5, 11C2277, 11C2292, 7001S, Guangzhan63S, Ke108A, and R106; 4, 5, 12-17: Genetically modified rice BPL9K-1, BPL9K-4, EB7001S-5, B1C893, EB185BS, B2A68, BarKasalath-01, and Bar9K29-9-2
Fig.6 Detection limit of event-specific detection method based on the left and the right flanking sequences(a) Detection limit of event-specific detection method based on the left flanking sequences (b) Detection limit of event-specific detection method based on the right flanking sequence M: DL 2000 DNA marker; 0: Blank control; CK: Non-transgenic rice 9K19-5; 100%, 20%, 5%, 2%,1%, 0.5%, and 0.1%: The relative content of genetically modified BPL9K-2 genomic DNA in the template (V/V)
Fig.7 The relative content of PCR amplification products of event-specific detection based on the left and the right flanking sequences(a)The relative content of PCR amplification products of event-specific detection based on the left flanking sequences (b) The relative content of PCR amplification products of event-specific detection based on the right flanking sequences Marker: The relative content of DNA in 750bp brand of DL 2000 marker; 0: Blank control; CK: Non-transgenic rice 9K19-5; 100%, 20%, 5%, 2%, 1%,0.5% , and 0.1 %: The relative content of genomic DNA of genetically modified rice BPL9K-2 in the template (V/V)
Fig.8 Genotyping of genetically modified rice BPL9K-2 M: DL 2000 marker; 0: Blank control; CK: Non-transgenic rice 9K19-5; 1: Homozygote of genetically modified rice BPL9K-2; 2: Heterozygote of genetically modified rice BPL9K-2
[1]   王恒波, 陈平华, 郭晋隆 , 等. 转基因大豆GTS40-3-2转化事件特异性PCR检测. 基因组学与应用生物学, 2010,29(6):1177-1183.
[1]   Wang H B, Chen P H, Guo J L , et al. Specific PCR validation of transformation event for transgenic soybean GTS40-3-2. Genomics and Applied Biology, 2010,29(6):1177-1183.
[2]   翟志芳, 许文涛, 张南 , 等. 转基因玉米LY038转化事件的特异性检测. 农业生物技术学报, 2011,19(3):577-582.
doi: 10.3969/j.issn. 1674-7968.2011.03.026
[2]   Zhai Z F, Xu W T, Zhang N , et al. Event-specific transgenic detection of genetically modified maize LY038. Journal of Agricultural Biotechnology, 2011,19(3):577-582.
doi: 10.3969/j.issn. 1674-7968.2011.03.026
[3]   汪小福, 陈笑芸, 张小明 , 等. 转Cry1Ab基因水稻分子特征及其特异性PCR检测方法. 遗传, 2012,34(2):208-214.
doi: 10.3724/SP.J.1005.2012.00208
[3]   Wang X F, Chen X Y, Zhang X M , et al. Molecular characteristics and specific PCR detection of transgenic rice containing Cry1Ab. Hereditas, 2012,34(2):208-214.
doi: 10.3724/SP.J.1005.2012.00208
[4]   苏长青, 谢家建, 王奕海 , 等. 转基因水稻Bt汕优63的整合结构和品系特异性定量PCR方法. 农业生物技术学报, 2011,19(3):434-441.
[4]   Su C Q, Xie J J, Wang Y H , et al. Integrated construction and event-specific real-time PCR of transgenic rice Bt Shanyou 63. Journal of Agricultural Biotechnology, 2011,19(3):434-441.
[5]   蒋利平, 翁绿水, 肖国樱 . 转基因水稻B2A68事件特异性检测方法的建立. 杂交水稻, 2013,5:60-67.
[5]   Jiang L P, Wang L S, Xiao G Y . Establishment of an event-specific method to detect transgenic rice B2A68. Hybrid Rice, 2013,5:60-67.
[6]   魏岁军, 邓力华, 肖国樱 . 转基因水稻EB7001S事件特异性检测方法的建立. 农业生物技术学报, 2014,22(5):621-631.
doi: 10.3969/j.issn.1674-7968.2014.05.011
[6]   Wei S J, Deng L H, Xiao G Y . Establishment of an event-specific method to detect transgenic rice (Oryza sativa) EB7001S. Journal of Agricultural Biotechnology, 2014,22(5):621-631.
doi: 10.3969/j.issn.1674-7968.2014.05.011
[7]   郭超, 何行健, 邓力华 , 等. 转基因水稻BarKasalath-01事件特异性检测. 分子植物育种, 2017,15(11):4466-4475.
[7]   Guo C, He X J, Deng L H , et al. Event-specific detection of genetically modified rice BarKasalath-01. Molecular Plant Breeding, 2017,15(11):4466-4475.
[8]   杜春芳, 李朋波, 李润植 . 一种快速鉴定转基因植物纯合体的新方法. 生物技术通讯, 2004,15(6):585-587.
doi: 10.3969/j.issn.1009-0002.2004.06.013
[8]   Du C F, Li M B, Li R Z . A new method for the rapid identification of homozygous transgenic plants. Letters in Biotechnology, 2004,15(6):585-587.
doi: 10.3969/j.issn.1009-0002.2004.06.013
[9]   张斌, 何福林 . 三引物法鉴定转基因水稻U5纯合体. 分子植物育种, 2017,15(11):4476-4482.
[9]   Zhang B, He F L . Identification of transgenic rice U5 homozygote by three primers. Molecular Plant Breeding, 2017,15(11):4476-4482.
[10]   张焕春, 汪小福, 李玥莹 , 等. 转Cry1Ab水稻纯合体快速准确的PCR鉴定方法. 浙江农业学报, 2012,24(4):549-554.
doi: 10.3969/j.issn.1004-1524.2012.04.003
[10]   Zhang H C, Wang X F, Li Y Y , et al. A rapid and accurate PCR method for homozygous lines screening for genetically modified rice containing Cry1Ab. Acta Agriculturae Zhejiangensis, 2012,24(4):549-554.
doi: 10.3969/j.issn.1004-1524.2012.04.003
[11]   Wang Z P, Deng L H, Weng L S , et al. Transgenic rice expressing a novel phytase-lactoferricin fusion gene to improve phosphorus availability and antibacterial activity. Journal of Integrative Agriculture, 2017,16(4):774-788.
doi: 10.1016/S2095-3119(16)61468-5
[12]   Surzycki S . Preparation of genomic DNA from plant cells//Basic Techniques in Molecular Biology. Berlin:Springer Berlin Heidelberg, 2000: 57-78.
[13]   Liu Y G, Chen Y . High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques, 2007,43(5):649.
doi: 10.2144/000112601 pmid: 18072594
[14]   许文涛, 白卫滨, 罗云波 , 等. 转基因产品检测技术研究进展. 农业生物技术学报, 2008,16(4):714-722.
doi: 10.3969/j.issn.1674-7968.2008.04.028
[14]   Xu W T, Bai W B, Luo Y B . Research progress in detection technique for genetically modified organisms. Journal of Agricultural Biotechnology, 2008,16(4):714-722.
doi: 10.3969/j.issn.1674-7968.2008.04.028
[15]   薛达元 . 转基因生物安全与管理. 北京: 科学出版社, 2009.
[15]   Xue D Y. Biosafety and regulation for genetically modified organisms. Beijing: Sciences Press, 2009.
[16]   Gheysen G, Villarroel R, Montagu M V . Illegitimate recombination in plants: a model for T-DNA integration. Genes & Development, 1991,5(2):287-297.
[17]   杨琳, 付凤玲, 李晚忱 . 农杆菌介导转基因植物T-DNA的整合方式. 遗传, 2011,33(12):1327-1334.
doi: 10.3724/SP.J.1005.2011.01327
[17]   Yang L, Fu F L, Li W Z . T-DNA integration patterns in transgenic plants mediated by Agrobacterium tumefaciens. Hereditas, 2011,33(12):1327-1334.
doi: 10.3724/SP.J.1005.2011.01327
[18]   Tzfira T, Li J, Lacroix B , et al. Agrobacterium T-DNA integration: molecules and models. Trends in Genetics, 2004,20(8):375-383.
doi: 10.1016/j.tig.2004.06.004 pmid: 15262410
[19]   王良超 . OsLSR:一个调控免疫反应和花发育的水稻基因. 浙江:浙江大学, 2016.
[19]   Wang L C . OsLSR: a rice gene that regulates immune response and floral differentiation. Zhejiang: Zhejiang University, 2016.
[20]   邓力华, 邓晓湘, 魏岁军 , 等. 抗虫抗除草剂转基因水稻B1C893的获得与鉴定. 杂交水稻, 2014,29(1):67-75.
[20]   Deng L H, Deng X X, Wei S J , et al. Development and identification of herbicide and insect resistant transgenic plant B1C893 in rice. Hybrid Rice, 2014,29(1):67-75.
[21]   魏岁军 . 转基因水稻EB7001S和BlC893的分子特征鉴定和相关性状评价. 北京:中国科学院大学, 2014.
[21]   Wei S J . Molecular identification and evaluation of transgenic rice EB7001S and BIC893. Beijing: University of Chinese Academy of Sciences, 2014.
[1] LI Liang, ZANG Chao, WANG Jing, SUI Zhi-wei, ZHAO Zheng-yi, DONG Lian-hua. Construction of a Reference Plasmid for the Quantification of Genetically Modified Rice Kemingdao 2 and Uncertainty Evaluation[J]. China Biotechnology, 2012, 32(10): 19-24.
[2] LI Fu-peng, WU Bao-duo, MA Chao-zhi, FU Ting-dong. Progress of Chromosome Walking by PCR Amplification Techniques[J]. China Biotechnology, 2010, 30(12): 87-94.
[3] WEI Hai-Chao, ZHANG Yan, FAN Yao-Chun, LI Chuan-Yi, WEN Yu-Ling, CHEN Yuan-Ding. Expression of NSP1 of a Group A Human Rotavirus and Immunological Properties[J]. China Biotechnology, 2010, 30(03): 15-21.
[4] CHEN Yuan-Ding Xiao LIU Xin-Yu XIONG Zhi-Liang CAO Yu-Ling WEN Qing-Huan ZHAO Yang YU Xing-Xiao Yin Chuan-Yin Li Yao-Chun FAN. Cloning of Full Genome and Genotyping of a Group A Human Rotavirus[J]. China Biotechnology, 2008, 28(2): 25-31.