Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (9): 88-93    DOI: 10.13523/j.cb.20180913
Orginal Article     
Research Progress of Type VI Secretion System in Pseudomonas aeruginosa
Xue-yao FANG,Long-hua HU,Ya-ping HANG,Feng YU,Yan-hui CHEN,Qiao-shi ZHONG()
Department of Clinical Laboratory Medicine,the Second Affiliated Hospital of Nanchang University,Key Laboratory of Laboratory Medicine in Jiangxi Province,Nanchang 330006,China
Download: HTML   PDF(730KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In recent years, Pseudomonas aeruginosa has become one of the main pathogens of nosocomial infections, which is an opportunistic pathogen can cause acute or chronic multiple infections and is hard to be controlled by antibiotics. Studies have shown that the key to pathogenicity is the precise delivery of virulence factors to host cells by bacteria, while the secretory system plays an important role in this process. Among them, the recently discovered type VI secretion system (T6SS) is a type of secretion system that has drawn great attention from domestic and foreign,which plays an important role not only in the interaction between Pseudomonas aeruginosa and the host but also in the mechanism of promoting biofilm formation. Focusing on the studies of the structure, functions and regulatory mechanisms of Pseudomonas aeruginosa T6SS, a brief review was conducted to provide a new strategy for the treatment of patients with Pseudomonas aeruginosa infection.



Key wordsPseudomonas aeruginosa      Type VI secretion system      Effectors     
Received: 29 March 2018      Published: 12 October 2018
Corresponding Authors: Qiao-shi ZHONG     E-mail: zhong20000947@sina.com
Cite this article:

Xue-yao FANG,Long-hua HU,Ya-ping HANG,Feng YU,Yan-hui CHEN,Qiao-shi ZHONG. Research Progress of Type VI Secretion System in Pseudomonas aeruginosa. China Biotechnology, 2018, 38(9): 88-93.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180913     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I9/88

Fig.1 Schematic representation of the structure and mechanism of the type VI secretion system (adapted from reference[19])IM:Inner membrane; OM: Outer membrane; PG:Peptidoglycan
[1]   Golovkine G, Reboud E, Huber P . Pseudomonas aeruginosa takes a multi-target approach to achieve junction breach. Front Cell Infect Microbiol, 2017,7:532.
[2]   Mougous J D, Cuff M E, Raunser S , et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science, 2006,312(5779):1526-1530.
doi: 10.1126/science.1128393
[3]   Bladergroen M R, Badelt K, Spaink H P . Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact, 2003,16(1):53-64.
doi: 10.1094/MPMI.2003.16.1.53
[4]   Pukatzki S, Ma A T, Sturtevant D , et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA, 2006,103(5):1528-1533.
doi: 10.1073/pnas.0510322103
[5]   Boyer F, Fichant G, Berthod J , et al. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources. BMC Genomics, 2009,10(1):104.
doi: 10.1186/1471-2164-10-104
[6]   Brunet Y R, Zoued A, Boyer F , et al. The type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genet, 2015,11(10):e1005545.
doi: 10.1371/journal.pgen.1005545
[7]   Logger L, Aschtgen M S, Guerin M , et al. Molecular dissection of the interface between the type VI secretion TssM cytoplasmic domain and the TssG baseplate component. J Mol Biol, 2016,428(22):4424-4437.
doi: 10.1016/j.jmb.2016.08.032
[8]   Zoued A, Duneau J P, Durand E , et al. Tryptophan-mediated dimerization of the TssL transmembrane anchor is required for type VI secretion system activity. J Mol Biol, 2018,430(7):987-1003.
doi: 10.1016/j.jmb.2018.02.008
[9]   Brunet Y R, Henin J, Celia H , et al. Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep, 2014,15(3):315-321.
doi: 10.1002/embr.201337936
[10]   Shneider M M, Buth S A, Ho B T , et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature, 2013,500(7462):350-353.
doi: 10.1038/nature12453
[11]   Cianfanelli F R, Alcoforado D J, Guo M , et al. VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog, 2016,12(6):e1005735.
doi: 10.1371/journal.ppat.1005735
[12]   Ge P, Scholl D, Leiman P G , et al. Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat Struct Mol Biol, 2015,22(5):377-382.
doi: 10.1038/nsmb.2995
[13]   Brackmann M, Wang J, Basler M . Type VI secretion system sheath inter-subunit interactions modulate its contraction. EMBO Rep, 2018,19(2):225-233.
doi: 10.15252/embr.201744416
[14]   Salih O, He S, Planamente S , et al. Atomic structure of type VI contractile sheath from Pseudomonas aeruginosa. Structure, 2018,26(2):329-336.
doi: 10.1016/j.str.2017.12.005
[15]   Lossi N S, Dajani R, Freemont P , et al. Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiology, 2011,157(Pt 12):3292-3305.
doi: 10.1099/mic.0.051987-0
[16]   Pietrosiuk A, Lenherr E D, Falk S , et al. Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem, 2011,286(34):30010-30021.
doi: 10.1074/jbc.M111.253377
[17]   Corbitt J, Yeo J S, Davis C I , et al. T6SS dynamics reveals a novel secretion mechanism in Pseudomonas aeruginosa. J Bacteriol, 2018,200(11):e000744-17.
[18]   Kapitein N, Bonemann G, Pietrosiuk A , et al. ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol, 2013,87(5):1013-1028.
doi: 10.1111/mmi.2013.87.issue-5
[19]   Cianfanelli F R, Monlezun L, Coulthurst S J . Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol, 2016,24(1):51-62.
doi: 10.1016/j.tim.2015.10.005
[20]   Bingle L E, Bailey C M, Pallen M J . Type VI secretion: a beginner’s guide. Curr Opin Microbiol, 2008,11(1):3-8.
doi: 10.1016/j.mib.2008.01.006
[21]   Hood R D, Singh P, Hsu F , et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe, 2010,7(1):25-37.
doi: 10.1016/j.chom.2009.12.007
[22]   Lu D, Shang G, Yu Q , et al. Expression, purification and preliminary crystallographic analysis of the T6SS effector protein Tse3 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2013,69(Pt 5):524-527.
doi: 10.1107/S1744309113007148
[23]   Russell A B, Peterson S B, Mougous J D . Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol, 2014,12(2):137-148.
doi: 10.1038/nrmicro3185
[24]   Whitney J C, Beck C M, Goo Y A , et al. Genetically distinct pathways guide effector export through the type VI secretion system. Mol Microbiol, 2014,92(3):529-542.
doi: 10.1111/mmi.12571
[25]   Whitney J C, Quentin D, Sawai S , et al. An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell, 2015,163(3):607-619.
doi: 10.1016/j.cell.2015.09.027
[26]   Lacourse K D, Peterson S B, Kulasekara H D , et al. Conditional toxicity and synergy drive diversity among antibacterial effectors. Nat Microbiol, 2018,3(4):440-446.
doi: 10.1038/s41564-018-0113-y
[27]   Russell A B, Leroux M, Hathazi K , et al. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature, 2013,496(7446):508-512.
doi: 10.1038/nature12074
[28]   Wilderman P J, Vasil A I, Johnson Z , et al. Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model. Molecular Microbiology, 2001,39(2):291-303.
doi: 10.1046/j.1365-2958.2001.02282.x
[29]   Jiang F, Waterfield N R, Yang J , et al. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. Cell Host Microbe, 2014,15(5):600-610.
doi: 10.1016/j.chom.2014.04.010
[30]   Sana T G, Baumann C, Merdes A , et al. Internalization of Pseudomonas aeruginosa strain PAO1 into epithelial cells is promoted by interaction of a T6SS effector with the microtubule network. mBio, 2015,6(3):e712.
[31]   Kierbel A, Gassama-Diagne A, Rocha C , et al. Pseudomonas aeruginosa exploits a PIP3-dependent pathway to transform apical into basolateral membrane. J Cell Biol, 2007,177(1):21-27.
doi: 10.1083/jcb.200605142
[32]   Lee J, Zhang L . The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell, 2015,6(1):26-41.
doi: 10.1007/s13238-014-0100-x
[33]   Lesic B, Starkey M, He J , et al. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology, 2009,155(Pt 9):2845-2855.
doi: 10.1099/mic.0.029082-0
[34]   Gallique M, Bouteiller M, Merieau A . The type VI secretion system: a dynamic system for bacterial communication. Front Microbiol, 2017,8:1454.
doi: 10.3389/fmicb.2017.01454
[35]   Sana T G, Hachani A, Bucior I , et al. The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and fur and modulates internalization in epithelial cells. J Biol Chem, 2012,287(32):27095-27105.
doi: 10.1074/jbc.M112.376368
[36]   Kustu S, Santero E, Keener J , et al. Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev, 1989,53(3):367-376.
[37]   Viducic D, Murakami K, Amoh T , et al. RpoN modulates carbapenem tolerance in Pseudomonas aeruginosa through Pseudomonas quinolone signal and PqsE. Antimicrobial Agents & Chemotherapy, 2016,60(10):5752-5764.
[38]   Zhao C, Yang L, Yicai C , et al. RpoN Regulates virulence factors of Pseudomonas aeruginosa via modulating the PqsR quorum sensing regulator. International Journal of Molecular Sciences, 2015,16(12):28311-28319.
doi: 10.3390/ijms161226103
[39]   Shao X, Zhang X, Zhang Y , et al. RpoN-dependent direct regulation of quorum sensing and the type VI secretion system in Pseudomonas aeruginosa PAO1. J Bacteriol, 2018,200(16):e00205-18.
[40]   Al G M M, M H , , et al. Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev, 2009,23(2):249-259.
doi: 10.1101/gad.1739009
[41]   Allsopp L P, Wood T E, Howard S A , et al. RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci USA, 2017,114(29):201700286.
[42]   Brencic A, Mcfarland K A, Mcmanus H R , et al. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Molecular Microbiology, 2009,73(3):434-445.
doi: 10.1111/mmi.2009.73.issue-3
[43]   Yasuhiko I, Melissa S, Adrianne E , et al. Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Molecular Microbiology, 2010,78(1):158-172.
[44]   Unterweger D, Kostiuk B, Pukatzki S . Adaptor proteins of type VI secretion system effectors. Trends Microbiol, 2017,25(1):8-10.
doi: 10.1016/j.tim.2016.10.003
[45]   Lin J, Cheng J, Chen K , et al. The icmF3 locus is involved in multiple adaptation- and virulence-related characteristics in Pseudomonas aeruginosa PAO1. Front Cell Infect Microbiol, 2015,5:70.
[46]   Nguyen V S, Logger L, Spinelli S , et al. Inhibition of type VI secretion by an anti-TssM llama nanobody. PLoS One, 2015,10(3):e122187.
[1] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[2] HU Li-li, ZHUO Kan, LIN Bo-rong, LIAO Jin-ling. The Research Progress of Methods on Function Analysis of Effectors from Plant-parasitic Nematode[J]. China Biotechnology, 2016, 36(2): 101-108.