Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (9): 12-18    DOI: 10.13523/j.cb.20180902
Orginal Article     
Effects of MTHFD1 Overexpression on Lipid Synthesis in the Oleaginous Fungus, Mortierella alpina
Qi-zai WANG,Hong-chao WANG(),Hai-qin CHEN,Jian-xin ZHAO,Hao ZHANG,Wei CHEN,Yong-quan CHEN
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(798KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Mortierella alpina is a filamentous fungus with a high polyunsaturated fatty acids content,but its sources of NADPH needed for lipid synthesis are not been studied completely. The binary vector pBIG2-ura5s-MTHFD1 was constructed for the transformation of the methylenetetrahydrofolate dehydrogenase(MTHFD1)into the M.alpina (uracil auxotrophic) strain by Agrobacterium tumefaciens-mediated transformation (ATMT). PCR analysis identified the presence of the MTHFD1 overexpression cassette in the genome, and qPCR analysis showed that the transcript levels of the MTHFD1 gene in MTHFD1 overexpression strain (MA-MTHFD1) were significantly increased compared to controls. The results showed that MTHFD1 overexpression influenced lipid synthesis significantly. In comparsion to prototrophic M. alpina, the total fatty acid(TFA)level increased by about 40.13% and NADPH level simultaneously increased by 26.45% in MA-MTHFD1. Moreover, two key enzymes ME and IDH in NADPH synthesis were up-regulated. Based on the results, MTHFD1 plays an important role in NADPH generation during lipid synthesis in M. alpina. A foundation for uncovering mechanism of lipogenesis in M. alpina was established.



Key wordsMTHFD1      Mortierella alpina      Lipid synthesis      NADPH     
Received: 05 March 2018      Published: 12 October 2018
Corresponding Authors: Hong-chao WANG     E-mail: hcwang@jiangnan.edu.cn
Cite this article:

Qi-zai WANG,Hong-chao WANG,Hai-qin CHEN,Jian-xin ZHAO,Hao ZHANG,Wei CHEN,Yong-quan CHEN. Effects of MTHFD1 Overexpression on Lipid Synthesis in the Oleaginous Fungus, Mortierella alpina. China Biotechnology, 2018, 38(9): 12-18.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180902     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I9/12

Fig.1 The reaction of MTHFD1 in M.alpina
培养基 配方(1L)
LB液体培养基 10g胰蛋白胨,10g氯化钠,5g酵母粉(在该培养基配方中添加20g琼脂即为固体培养基)
SOC复苏培养基 20g 胰蛋白胨,5g 酵母粉,0.5g 氯化钠,3.6g 葡萄糖,0.95g 氯化镁,0.186g 氯化钾
YEP液体培养基 10g酵母提取物,10g 胰蛋白胨,5g 氯化钠(在该培养基配方中添加20g琼脂即为固体培养基)
MM液体培养基 1.74g磷酸氢二钾,1.37g磷酸二氢钾,0.078g氯化钙,0.002 5g七水合硫酸亚铁,0.146g氯化钠,0.49g七水合硫酸镁,0.53g硫酸铵,7.8g 2-(N-吗啡啉)乙磺酸,1.8g葡萄糖,5g丙三醇,pH为6.8
IM液体培养基 在MM液体培养基的配方中添加0.039 2g的乙酰丁香酮(AS)即可
SC固体培养基 20g 葡萄糖,5g 酵母氮源无氨基酸和硫酸铵,1.7g 硫酸铵,60mg 异亮氨酸,60mg 苯丙氨酸,60mg 亮氨酸,50mg 苏氨酸,40mg 赖氨酸,30mg 酪氨酸,20mg 精氨酸,20mg 腺嘌呤,20mg 组氨酸,10mg 甲硫氨酸,20g 琼脂,pH为6.8
SC-CS固体培养基 在SC固体培养基的配方上添加0.1g壮观霉素奇霉素(spectinomycin)和0.1g头孢噻肟抗生素(cefotaxime sodium)
Broth液体培养基 20g 葡萄糖,5g 酵母提取物,1g 磷酸氢二钾,0.25g七水硫酸镁,10g 硝酸钾,pH为6.0
GY固体培养基 20g葡萄糖,10g酵母提取物,2g硝酸钾,1g磷酸二氢钠,3g七水硫酸镁,20g琼脂,pH为6.8
GY-U培养基 在GY固体培养基的配方上添加0.1g尿嘧啶
Table 1 Culture mediums used in this study
基因 引物序列
MTHFD1-F CGGGGTACCGCATGCCTGTGGCATATCAGAG
MTHFD1-R CGAGCTCTTACATGATCTTGGTCATCGC
HisproF1 CACACACAAACCTCTCTCCCACT
TrpCR1 CAAATGAACGTATCTTATCGAGATCC
MTHFD1 (qPCR) CGGCTACGCAAGGACAT
MTHFD1 (qPCR) GCCACCATCGGGTTATTC
6PGD(qPCR) AAGTTGCCTGTCCGCCATC
6PGD (qPCR) TAGTGCCAGCCGTTCTCCTT
G6PD(qPCR) CGTATGCTGGGTCTGGTTAGG
G6PD(qPCR) AGAAGGCTAGGTCTCCCGATG
ME (qPCR) CCTTGCAGGACCGTAACGAGA
ME (qPCR) CCTGGAGCGACGATAAATGGA
IDH(qPCR) CTCGTCCCTGGGTGGACAG
IDH(qPCR) CCATCAGCGGGCGTAAAA
18S rDNA CGTACTACCGATTGAATGGCTTAG
18S rDNA CCTACGGAAACCTTGTTACGACT
Table 2 Primers used in this study
成分 取量
Power SYBR?? Green PCR Master Mix 10μl
cDNA 1μl
上、下游引物 各1μl
无酶水 7μl
Table 3 Real-time PCR system
Fig.2 PCR cloning products of MTHFD1(1),PCR identification of recombinant plasmid pBIG2-ura5s-MTHFD1(2)and PCR identification of recombinant strain MA-MTHFD1(3)
Fig.3 Schemas of the construction of recombinant plasmid pBIG2-ura5s-MTHFD1
Fig.4 Effects of MTHFD1 overexpression on transcript levels of NADPH-generating genes
Fig.5 Effects of MTHFD1 overexpression on dry cell weight
菌株 脂肪酸组成(mg/mg,菌体干重)
C16:0 C18:0 C18:1 C18:2 C18:3 C20:3 C20:4
M. alpina 0.178±0.027 0.116±0.008 0.305±0.008 0.063±0.004 0.036±0.001 0.037±0.004 0.228±0.024 0.350±0.034
MA-MTHFD1 0.128±0.002 0.137±0.006 0.100±0.035 0.081±0.003 0.048±0.002 0.039±0.005 0.435±0.050 0.491±0.006
Table 4 The content of fatty acids in M.alpina
Fig.6 Effects of MTHFD1 overexpression on relative composition of fatty acids
Fig.7 Effects of MTHFD1 overexpression on NADPH content
[1]   Wang H, Yang B, Hao G , et al. Biochemical characterization of the tetrahydrobiopterin synthesis pathway in the oleaginous fungus Mortierella alpina. Microbiology-Sgm, 2011,157(Pt11):3059-3070.
doi: 10.1099/mic.0.051847-0
[2]   Nisha A, Venkateswaran G . Effect of culture variables on mycelial arachidonic acid production by Mortierella alpina. Food and Bioprocess Technology, 2011,4(2):232-240.
doi: 10.1007/s11947-008-0146-y
[3]   Ratledge C . Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 2004,86(11):807-815.
doi: 10.1016/j.biochi.2004.09.017 pmid: 15589690
[4]   Maehre H K, Jensen I J, Elvevoll E O , et al. Omega-3 fatty acids and cardiovascular diseases: effects, mechanisms and dietary relevance. International Journal of Molecular Sciences, 2015,16(9):22636-22661.
doi: 10.3390/ijms160922636 pmid: 4613328
[5]   Sakuradani E, Abe T, Iguchi K , et al. A novel fungal omega3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4. Applied Microbiology and Biotechnology, 2005,66(6):648-654.
doi: 10.1007/s00253-004-1760-x
[6]   Sakuradani E, Kobayashi M, Ashikari T , et al. Identification of delta12-fatty acid desaturase 225 from arachidonic acid-producing mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. European Journal of Biochemistry, 1999,261(3):812-820.
doi: 10.1046/j.1432-1327.1999.00333.x
[7]   Kaufman S . New tetrahydrobiopterin-dependent systems. Annual Review of Nutrition, 1993,13(13):261-286.
doi: 10.1146/annurev.nu.13.070193.001401
[8]   Fan J, Ye J, Kamphorst J J , et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature, 2014,510(7504):298-302.
doi: 10.1038/nature13236 pmid: 24805240
[9]   Lewis C A, Parker S J, Fiske B P , et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Molecular Cell, 2014,55(2):253-263.
doi: 10.1016/j.molcel.2014.05.008 pmid: 24882210
[10]   Ratledge C . The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnology Letters, 2014,36(8):1557-1568.
doi: 10.1007/s10529-014-1532-3
[11]   Wang L, Chen W, Feng Y , et al. Genome characterization of the oleaginous fungus mortierella alpina. PLoS One, 2011,6(12):e28319.
doi: 10.1371/journal.pone.0028319 pmid: 3234268
[12]   Pawelek P D , MacKenzie R E . Methylenetetrahydrofolate dehydrogenase-cyclohydrolase from Photobacterium phosphoreum shares properties with a mammalian mitochondrial homologue. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 1996,1296(1):47-54.
[13]   Patel H, Christensen K E, Mejia N , et al. Mammalian mitochondrial methylenetetrahydrofolate dehydrogenase-cyclohydrolase derived from a trifunctional methylenetetrahydrofolate dehydrogenase-cyclohydrolase-synthetase. Archives of Biochemistry and Biophysics, 2002,403(1):145-148.
doi: 10.1016/S0003-9861(02)00203-5
[14]   Bolusani S, Young B A, Cole N A , et al. Mammalian MTHFD2L encodes a mitochondrial methylenetetrahydrofolate dehydrogenase isozyme expressed in adult tissues. Journal of Biological Chemistry, 2011,286(7):5166-5174.
doi: 10.1074/jbc.M110.196840
[15]   王鸿超, 刘媛, 顾震南 , 等. 叶酸代谢抑制剂对小鼠骨髓基质细胞增殖和分化的影响. 食品科学, 2016,37(15):215-220.
doi: 10.7506/spkx1002-6630-201615036
[15]   Wang H C, Liu Y, Gu Z N , et al. Effect of folate metabolism inhibitor on proliferation and differentiation of mouse marrow stromal cells. Food Science, 2016,37(15):215-220.
doi: 10.7506/spkx1002-6630-201615036
[16]   Chen H, Hao G, Wang L , et al. Identification of a critical determinant that enables efficient fatty acid synthesis in oleaginous fungi. Scientific Reports, 2015,5(1):1124-1129.
[17]   Bligh E G, Dyer W J . A rapid Method oftotal lipid extraction and purification. Canadian Journal of Biochemistry & Physiology, 1959,37(8):911-917.
[18]   Wang H, Chen H, Hao G , et al. Role of the phenylalanine-hydroxylating system in aromatic substance degradation and lipid metabolism in the oleaginous fungus Mortierella alpina. Applied and Environmental Microbiology, 2013,79(10):3225-3233.
doi: 10.1128/AEM.00238-13
[1] DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong. Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy[J]. China Biotechnology, 2020, 40(8): 24-32.
[2] WU Xue-long, YANG Xiao-hui, WANG Jun-qing, WANG Rui-ming. Expression and Characteristics of Apis mellifera NADPH-cytochrome P450 Reductase Gene in Escherichia coli[J]. China Biotechnology, 2016, 36(12): 28-35.
[3] WANG Hong chao, ZHANG Chen, CHEN Dian ning, QIAO Ju yuan, CHEN Hai qin, GU Zhen nan, ZHANG Hao, CHEN Wei, CHEN Yong quan. Cloning, Expression and Function Analysis of Methylenetetrahydrofolate Dehydrogenase from Mortierella alpina[J]. China Biotechnology, 2016, 36(11): 23-29.
[4] CHENG Lei, WANG Lei-lei, CHENG Bei-jiu, FAN Jun. Prokaryotic Expression and Functional Analysis of Maize BAS1(2-Cys peroxiredoxinA)[J]. China Biotechnology, 2010, 30(11): 24-29.
[5] LONG Zong-Juan, DIAO Jiao-Gong, WEI Lan-Zhen, WANG Quan-Chi, MA Wei-Min. Construction of the ndhO Gene Inactivation Mutant of the Cyanobacterium Synechocystis sp. Strain PCC 6803 by Using the Homologous Recombination Strategy and its Molecular Identification[J]. China Biotechnology, 2010, 30(09): 31-35.