Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (8): 41-49    DOI: 10.13523/j.cb.20180806
    
Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis
Yi-ying WANG,Hai-rong CHENG()
School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
Download: HTML   PDF(1633KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Lactose is one of the important carbon sources for infants to obtain energy, but lactose needs to be hydrolyzed by enzyme to galactose and glucose before being absorbed. Infants and young children lacking lactose hydrolase can fall in lactose intolerance when consuming lactose-containing food. Lactose intolerance is a symptom of high incidence in China. Therefore, lactose hydrolysis with high efficiency in vitro is of great importance to alleviate the symptoms. The lactose hydrolase (also known as β-galactosidase) was displayed on the cell surface of the food-satefy-grade yeast Yarrowia lipolytica, and the engineered yeast cells are used directly to hydrolyze lactose to produce galactose and glucose. The engineered yeast cell (HCY10) can completely hydrolyze 50g/L lactose in 24 hours to produce galactose and glucose. The method has the advantages of high efficiency and simplicity, and it can provide an alternative solution for the efficient lactose hydrolysis in vitro.



Key wordsLactose      β-galactosidase;      Lactose hydrolase      Yarrowia lipolytica      Yeast surface display technology     
Received: 08 March 2018      Published: 11 September 2018
ZTFLH:  Q819  
Corresponding Authors: Hai-rong CHENG     E-mail: chrqrq@sjtu.edu.cn
Cite this article:

Yi-ying WANG,Hai-rong CHENG. Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis. China Biotechnology, 2018, 38(8): 41-49.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180806     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I8/41

Fig.1 Surface display plasmid containing lactose hydrolase gene from Aspergillus oryzae 112 (a) Plasmid pHyg-Pir1-P.dSIase (b) Plasmid pHyg-Pir1-Gal
Fig.2 Yeast transformants grown on YNLHX plate (a) Transformants grown on YNLHX plate (b) The yeast positive transformants grown on YNLHX plate (c) Color variations of yeast positive transformants by successive seven purification on YNLHX plate (d) Color variations of yeast positive transformants by successive twenty purification on YNLHX plate
Fig.3 Molecular identification of Y.lipolytica transformants M: DNA molecular standard; 1~4: The PCR results of lactose hydrolase gene of four transformants that remained dark blue; 5~8: The PCR results of lactose hydrolase gene of four light blue transformants; 9~10: The PCR results of lactose hydrolase gene of two white transformants
Fig.4 HPLC results of transformation of 5% lactose by different yeast transformants
Fig.5 Comparison of lactose hydrolase activity of 20 dark blue transformants
Fig.6 The hydrolysis efficiency of the HCY10 strain in different lactose concentrations
Fig.7 Comparison of erythritol synthesis by HCY10 transformant and control Y.lipolytica CGMCC7326 strain
[1]   Zhao Q Q, Liu F, Hou Z W , et al. High level production of β-galactosidase exhibiting excellent milk-lactose degradation ability from Aspergillus oryzae by codon and fermentation optimization. Applied Biochemistry and Biotechnology, 2014,172(6):2787-2799.
doi: 10.1007/s12010-013-0684-2
[2]   何梅 . 乳糖酶缺乏和乳糖不耐受. 环境卫生学杂志, 1999,26(6):339-342.
[2]   He M . Lactase deficiency and lactose intolerance. Journal of Environmental Hygiene, 1999,26(6):339-342.
[3]   吴晖, 牛晨艳, 黄巍峰 , 等. 乳糖不耐受症的现状及解决方法. 现代食品科技, 2006,22(1):152-155.
[3]   Wu H, Niu C Y, Huang W F , et al. The actuality and solution of lactose intolerance. Modern Food Science and Technology, 2006,22(1):152-155.
[4]   Heyman M B . Lactose intolerance in infants, children, and adolescents. Pediatrics, 2006,118(3):1279-1286.
doi: 10.1542/peds.2006-1721 pmid: 16951027
[5]   王雅男, 王康才, 李同根 , 等. 黄蜀葵花器官中β-半乳糖苷酶的提取纯化和酶学特性研究. 江西农业学报, 2011,23(3):126-128.
[5]   Wang Y N, Wang K C, Li T G , et al. Purification of β-galactosidase from flowers of Abelmoschus manihot and its characteristics. Acta Agriculture Jiangxi, 2011,23(3):126-128.
[6]   Torres D P, Gon?alves M D, Teixeira J A , et al. Galactooligosaccharides: production, properties, applications, and significance as prebiotics. Comprehensive Reviews in Food Science and Food Safety, 2010,9(5):438-454.
doi: 10.1111/crfs.2010.9.issue-5
[7]   杨竞成 . 酶法水解乳糖生成D-半乳糖的工艺条件优化. 大连: 大连工业大学, 2016.
[7]   Yang J C . Optimization of process conditions for enzymatic hydrolysis of lactose to produce D-galactose. Dalian: Dalian Polytechnic University, 2016.
[8]   刘鑫龙, 王立晖, 汤卫华 , 等. β-半乳糖苷酶催化合成低聚半乳糖的研究. 食品安全导刊, 2015(26):164-165.
[8]   Liu X L, Wang L H, Tang W H , et al. Studies on the synthesis of galactooligosaccharides catalyzed by β-galactosidase. China Food Safety Magazine, 2015(26):164-165.
[9]   Smith G P . Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985,228(4705):1315-1317.
doi: 10.1126/science.4001944
[10]   Charbit A, Boulain J C, Ryter A , et al. Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope expression at the cell surface. EMBO Journal, 1986,5(11):3029-3037.
doi: 10.1002/embj.1986.5.issue-11
[11]   Lattemann C T, Maurer J, Gerland E , et al. Autodisplay: functional display of active β-lactamase on the surface of Escherichia coli by the AIDA-I autotransporter. Journal of Bacteriology, 2000,182(13):3726-3733.
doi: 10.1128/JB.182.13.3726-3733.2000
[12]   Ernst W J, Alexra S, Lars T , et al. Expanding baculovirus surface display. European Journal of Biochemistry, 2000,267(13):4033-4039.
doi: 10.1046/j.1432-1327.2000.01439.x
[13]   Boder E T, Wittrup K D . Yeast surface display for screening combinatorial polypeptide libraries. Nature Biotechnology, 1997,15(6):553-557.
doi: 10.1038/nbt0697-553 pmid: 9181578
[14]   Efimov V P, Nepluev I V, Mesyanzhinov V V . Bacteriophage T4 as a surface display vector. Virus Genes, 1995,10(2):173-177.
doi: 10.1007/BF01702598 pmid: 8560777
[15]   Pepper L R, Yong K C, Boder E T , et al. A decade of yeast surface display technology: where are we now? Combinatorial Chemistry and High Throughput Screening, 2008,11(2):127-134.
doi: 10.2174/138620708783744516 pmid: 18336206
[16]   Kondo A, Ueda M . Yeast cell-surface display applications of molecular display. Applied Microbiology and Biotechnology, 2004,64(1):28-40.
doi: 10.1007/s00253-003-1492-3 pmid: 14716465
[17]   张莉 . 毕赤酵母GPⅠ型细胞壁蛋白基因的挖掘及功能研究. 广州: 华南理工大学, 2014.
[17]   Zhang L . Study on the function of GPⅠ type cell wall protein gene in Pichia pastoris. Guangzhou: South China University of Technology, 2014.
[18]   Groot P W, Ram A F, Klis F M . Features and functions of covalently linked proteins in fungal cell walls. Fungal Genetics and Biology, 2005,42(8):657-675.
doi: 10.1016/j.fgb.2005.04.002 pmid: 15896991
[19]   Rymowicz W, Wojtatowicz M, Robak M . Use of immobilized Yarrowia lipolytica cells in Ca-alginate for citric acid production. Acta Microbiologica Polonica, 1995,42(2):163-170.
[20]   Ucar F B, Celik G, Akpinar O , et al. Production of citric and isocitric acid by Yarrowia lipolytica strains grown on different carbon sources. Türk Biyokimya Dergisi, 2014,39(3):285-290.
[21]   Sarris D, Galiotou-Panayotou M, Koutinas A A , et al. Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media. Journal of Chemical Technology and Biotechnology, 2011,86(11):1439-1448.
doi: 10.1002/jctb.v86.11
[22]   Rymowicz W, Rywińska A, Marcinkiewicz M . High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnology Letters, 2009,31(3):377-380.
doi: 10.1007/s10529-008-9884-1
[23]   Juszczyk P, Tomaszewska L, Rymowicz W . Production of mannitol by Yarrowia lipolytica in fed-batch fermentation. International Conference on Advances in Biotechnology, 2013.
[24]   Nicaud J M, Madzak C, Peter V D B , et al. Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Research, 2002,2(3):371-379.
[25]   Li L J, Wang H W, Cheng H R , et al. Isomaltulose production by yeast surface display of sucrose isomerase from Pantoea dispersa on Yarrowia lipolytica. Journal of Functional Foods, 2017,32:208-217.
doi: 10.1016/j.jff.2017.02.036
[26]   Chen D C, Beckerich J M, Gaillardin C . One-step transformation of the dimorphic yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 1997,48(2):232-235.
doi: 10.1007/s002530051043 pmid: 9299782
[27]   Cheng H R, Jiang N . Extremely rapid extraction of DNA from bacteria and yeasts. Biotechology Letters, 2006,28(1):55-59.
doi: 10.1007/s10529-005-4688-z
[28]   Cheng H R, Lv J Y, Wang B , et al. Yarrowia lipolytica and its use in erythritol production: Chinese patent, 201310282059.X. 2013.
[29]   Wang S Q, Wang H W, Lv J Y , et al. Highly efficient erythritol recovery from waste erythritol mother liquid by yeast-mediated biopurification. Journal of Agricultural and Food Chemistry, 2017,65(50):11020-11028.
doi: 10.1021/acs.jafc.7b04112
[30]   Finogenova T, Morgunov I, Kamzolova S , et al. Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Applied Biochemistry and Microbiology, 2005,41(5):418-425.
doi: 10.1007/s10438-005-0076-7
[31]   Gao S, Tong Y, Zhu L , et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metabolic Engineering, 2017,41:192-201.
doi: 10.1016/j.ymben.2017.04.004
[32]   Xue Z X, Pamela L S, Seung-Pyo H , et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nature Biotechnology, 2013,31(8):734-740.
doi: 10.1038/nbt.2622 pmid: 2020
[33]   Zhang L B, An J, Li L J , et al. Highly efficient fructooligosaccharides production by an erythritol-producing yeast Yarrowia lipolytica displaying fructosyltransferase. Journal of Agricultural and Food Chemistry, 2016,64(19):3828-3837.
doi: 10.1021/acs.jafc.6b00115
[34]   An J, Zhang L B, Li L J , et al. An alternative approach to synthesizing galactooligosaccharides by cell-surface display of β-galactosidase on Yarrowia lipolytica. Journal of Agricultural and Food Chemistry, 2016,64(19):3819-3827.
doi: 10.1021/acs.jafc.5b06138
[35]   Li N, Wang H W, Cheng H L , et al. An integrated approach to producing high-purity trehalose from maltose by the yeast Yarrowia lipolytica displaying trehalose synthase (TreS) on the cell surface. Journal of Agricultural and Food Chemistry, 2016,64(31):6179-6187.
doi: 10.1021/acs.jafc.6b02175
[36]   Das S, Hollenberg C P . A high-frequency transformation system for the yeast Kluyveromyces lactis. Current Genetics, 1982,6(2):123-128.
doi: 10.1007/BF00435211 pmid: 24186478
[37]   Bussey H, Meaden P . Selection and stability of yeast transformants expressing cDNA of an Ml killer toxin-immunity gene. Current Genetics, 1985,9(4):285-291.
doi: 10.1007/BF00419957
[38]   Kikuchi Y . Yeast plasmid requires a cis-acting locus and two plasmid proteins for its stable maintenance. Cell, 1983,35(1):487-493.
doi: 10.1016/0092-8674(83)90182-4
[1] ZHU Hang-zhi,JIANG Shan,CHEN Dan,LIU Peng-yang,WAN Xia. Improving the Biosynthesis of β-Carotene in Yarrowia lipolytica by Introducing an Artificial Isopentenol Utilization Pathway[J]. China Biotechnology, 2021, 41(4): 37-46.
[2] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[3] SONG Yi-mei,JIA Xiu-wei,LI Shu-biao,GAO Cui-juan. Industrial Microorganism of Yarrowia lipolytica and Its Industrial Amplicaiton[J]. China Biotechnology, 2020, 40(9): 77-86.
[4] WANG Chen, LI Sha, XU Hong, WEI Yan, CAI Heng. Optimization of Fermentation Medium of Sucrose Isomerase by Recombinant Escherichia coli through Response Surface Method[J]. China Biotechnology, 2011, 31(04): 92-97.
[5] DENG Yong-Kang-1, TUN Min-Lu-2, LIU Cheng-Bang-1, DU Lin-Fang-1, WU Li-Li-1, LI Man-1, MENG Yan-Fa-1. Expression of recombinant uricase in E.coli JM109(DE3)Induced by lactose[J]. China Biotechnology, 2009, 29(07): 74-79.
[6] . Expression of Plant Monellin in Escherichia coli Induced by Lactose[J]. China Biotechnology, 2008, 28(3): 53-58.
[7] . Optimization of fermentation medium with lactose as a inducer for high molecular weight recombinant spider silk protein[J]. China Biotechnology, 2008, 28(12): 41-46.