Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (6): 52-57    DOI: 10.13523/j.cb.20180607
    
Construction of YOD1 Knockout Mice on CRISPR/Cas9 Technology
Hong-miao DAI,Ye-sheng FU,Ling-qiang ZHANG()
State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
Download: HTML   PDF(1757KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Construct YOD1 gene knockout mice based on CRISPR/Cas9 technology. Methods: Design and synthesize single-guide RNA (sgRNA) according to the YOD1 sequence in Genbank. Cas9 and sgRNA are transcribed to RNA in vitro, these RNA are then microinjected into zygotes of mice. The genotype is analyzed by PCR and sequencing. After YOD1 heterozygotes self-crossing and analysis of genotype of live offspring at weaning, wild type(WT)and knockout genotype(KO)littermates of YOD1 gene are verified. It is recorded that quantity and ratio of each genotype of live offspring of YOD1 heterozygotes self-crossing. And it is evaluated whether the ratio is in agreement with Mendel’s law of segregation. Protein lysates are made from main organs of the WT and KO littermates. And western blotting is used to assay the expression of YOD1 protein of these tissues. Meanwhile, size and weight of main organs and tissues of KO and WT mice are compared. Then analyze pathological phenotype of liver by H.E. staining. The glucose tolerance test (GTT) are carried out on the male mice of 6 months old. Results: According to PCR analysis and sequencing results, it is chose that mouse with deletion mutation and frameshift mutation in exon 2 of YOD1 gene to breed. After YOD1 heterozygotes self-crossing, WT and KO littermates are generated. According to statistics results, it is in agreement with Mendel’s law of segregation that the ratio of live offspring. Therefore, it is suggested that YOD1 KO mice birth normally without embryonic lethality. Western blotting results show that the expression of YOD1 in main organs is knocked-out significantly. Liver of YOD1 KO mouse is smaller in size than of WT littermate. There is no significant pathological phenotype in liver of YOD1 KO mice. YOD1 KO mice have general glycemic control in a GTT as compared to the control mice. Conclusions: YOD1 gene knockout mice are constructed successfully on CRISPR/Cas9 technology. And YOD1 KO mice birth and live normally without embryonic lethality. Compared to the control mice, livers of YOD1 KO mice are smaller in size and YOD1 KO mice have general glycemic control.



Key wordsCRISPR/Cas9      YOD1      Knockout mice     
Received: 09 March 2018      Published: 06 July 2018
ZTFLH:  Q343  
Corresponding Authors: Ling-qiang ZHANG     E-mail: zhanglq@nic.bmi.ac.cn
Cite this article:

Hong-miao DAI,Ye-sheng FU,Ling-qiang ZHANG. Construction of YOD1 Knockout Mice on CRISPR/Cas9 Technology. China Biotechnology, 2018, 38(6): 52-57.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180607     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I6/52

Fig.1 YOD1 knockout strategy
名称 序列(5'-3')
sgRNA-1 CGCAGGTGAAGCTTTTGGTC TGG
sgRNA-2 TGGTGCTCCTAGTTATGTCA GGG
Table 1 sgRNA targeting sequences
名称 序列(5'-3')
YOD1-sg-tF1 CCAACAGCAGTTACTTGTTCCCA
YOD1-sg-tR1 CTTCCCCAAAACGATCAATTCTG
Table 2 Primer sequences
Fig.2 Genotype of YOD1 knockout mice (a)Mice breed strategy (b)Analysis of littermates genotype by PCR (c)Sequencing analysis of WT and KO mice
Genotype Quantity Ratio
WT 25 20.33%
HET 66 53.66%
KO 32 26.02%
Table 3 Live offspring at weaning from HET× HET
Fig.3 The expression of YOD1 in tissues of KO mice is knocked-out significantly
Fig.4 Liver of YOD1 KO mouse is smaller in size (a)、(b)Livers of YOD1 KO mice are smaller in size(c)H.E. staining for liver of YOD1 KO mouse and WT littermate
Fig.5 Glucose tolerance test(n=3)
[1]   Fraile J M, Quesada V, Rodrıguez D , et al. DUB and cancer review-new functions and therapeutic options. Oncogene, 2012,31(16):2373-2388.
doi: 10.1038/onc.2011.443 pmid: 21996736
[2]   Mevissen T E, Hospenthal M K, Geurink P P , et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell, 2013,154(16):169-184.
doi: 10.1016/j.cell.2013.05.046 pmid: 23827681
[3]   Rape M, Hoppe T, Gorr I , et al. Membrane-tethered SPT23 transcription factor by CDC48UFD1_NPL4, a ubiquitin-selective chaperone. Cell, 2001,107(11):667-677.
doi: 10.1016/S0092-8674(01)00595-5 pmid: 11733065
[4]   Richly H, Rape M, Braun S , et al. A series of ubiquitin binding factors connects CDC48_p97 to substrate multiubiquitylation and proteasomal targeting. Cell, 2005,120(12):73-84.
doi: 10.1016/j.cell.2004.11.013 pmid: 15652483
[5]   Rumpf S, Jentsch S . Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. Molecular Cell, 2006,21(9):261-269.
doi: 10.1016/j.molcel.2005.12.014 pmid: 16427015
[6]   Ernst R, Mueller B, Ploegh H L , et al. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER, Molecular Cell, 2009,36(11):28-38.
doi: 10.1016/j.molcel.2009.09.016 pmid: 2774717
[7]   Sehrawat S, Koenig PA, Kirak O , et al. A catalytically inactive mutant of the deubiquitylase YOD-1 enhances antigen cross-presentation. Blood, 2013,121(12):1145-1156.
doi: 10.1182/blood-2012-08-447409 pmid: 23243279
[8]   Papadopoulos C, Kirchner P, Bug M , et al. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. Embo J, 2017,36(2):135-150.
doi: 10.15252/embj.201695148 pmid: 27753622
[9]   Schimmack G, Schorpp K, Kutzner K , et al. YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-kB. eLIFE, 2017,6:e22416.
doi: 10.7554/eLife.22416 pmid: 28244869
[10]   Kim Y, Kim W, Song Y , et al. Deubiquitinase YOD1 potentiates YAP/TAZ activities through enhancing ITCH stability. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(7):4691-4696.
doi: 10.1073/pnas.1620306114 pmid: 28416659
[11]   Tanji K, Mori F, Miki Y , et al. YOD1 attenuates neurogenic proteotoxicity through its deubiquitinating activity. Neurobiology of Disease, 2018,112(10):14-23.
doi: 10.1016/j.nbd.2018.01.006 pmid: 29330040
[12]   Li L, Xie X, Qin J , et al. The nuclear orphan receptor COUP-TFII plays an essential role in adipogenesis, glucose homeostasis, and energy metabolism. Cell Metabolism, 2010,468(5):67-71.
doi: 10.1016/j.cmet.2008.12.002 pmid: 2630393
[13]   Garneau J E, Dupuis M E, Villion M , et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010,468(5):67-71.
doi: 10.1038/nature09523 pmid: 21048762
[14]   Platt R J, Chen S, Zhou Y , et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 2014,159(16):440-455.
doi: 10.1016/j.cell.2014.09.014 pmid: 4265475
[15]   Ran F A, Hsu P D, Wright J , et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013,8(28):2281-2308.
doi: 10.1038/nprot.2013.143 pmid: 3969860
[16]   Zhang F, Wen Y, Guo X . CRISPR/Cas9 for genome editing: progress, implications and challenges, Human Molecular Genetics, 2014,23(7):R40-46.
doi: 10.1093/hmg/ddu125 pmid: 24651067
[17]   Hsu P D, Lander E S, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(17):1262-1278.
doi: 10.1016/j.cell.2014.05.010 pmid: 4343198
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[3] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[4] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[5] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[6] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[7] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[8] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[9] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[10] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[11] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[12] Chao-jing GUO,Qiong ZHU,Xin ZHANG,Lei LI,Ling-qiang ZHANG. Generation and Phenotypic Analysis of Hepatic-specific Deubiquitinase OTUB1 Knockout Mice Model[J]. China Biotechnology, 2019, 39(5): 80-87.
[13] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[14] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[15] Sai-bao LIU,Ya-fang LI,Hui WANG,Wei WANG,Duo-liang RAN,Hong-yan CHEN,Qing-wen MENG. Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9[J]. China Biotechnology, 2019, 39(1): 46-54.