Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (6): 43-51    DOI: 10.13523/j.cb.20180606
    
Identification of Cyclic β-1,2-glucan Produced under pH Control
Juan-juan QU,Xiao-bei ZHAN(),Hong-tao ZHANG(),Xian-chao ZHOU,Yu-chen JIA,Xue-ying CAO
Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
Download: HTML   PDF(1767KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To study the effects of pH on the production cyclic β-1,2-glucan, and analyze the structure of cyclic glucans under pH control. Methods:Rhizobium radiobacter ATCC 1333 was used to analyze the effects of pH on fermentation. The cyclic glucans were separated, purified and purified, then analyzed by matrix-assisted laser desorption/ionization time of flight mass spectrometry(MALDI-MS), monosaccharide composition analysis, electrospray ionization mass spectrometry(ESI-MS), fourier transform infrared spectrometer(FTIR) and nuclear magnetic resonance spectroscopy(NMR). Results: The two stage pH strategy was developed in which pH was controlled at 7.0 for the cell growth and then shift to 5.5. The results showed that biomass was increased by 102% and the cyclic glucan concentration increased by 52%, and the fermentation color was controlled at the background level. Also, the glucans from Rhizobium radiobacter ATCC 1333 were cyclic glucans consisting of glucose by β-1,2 linkages with a degree of polymerization ranging from 17~22, mainly 19. Conclusion: The pH controlled at 7.0 has no effect on the structure of cyclic β-1,2-glucans, and provides a theoretical basis for the fermentation optimization and reliable source of cyclic β-1,2-glucans.



Key wordsRhizobium radiobacter ATCC 1333      pH control Cyclic      β-1,2-glucan      MALDI-MS      ESI-MS      NMR     
Received: 07 February 2018      Published: 06 July 2018
ZTFLH:  Q815  
Corresponding Authors: Xiao-bei ZHAN,Hong-tao ZHANG     E-mail: xbzhan@yahoo.com;htzhang@jiangnan.edu.cn
Cite this article:

Juan-juan QU,Xiao-bei ZHAN,Hong-tao ZHANG,Xian-chao ZHOU,Yu-chen JIA,Xue-ying CAO. Identification of Cyclic β-1,2-glucan Produced under pH Control. China Biotechnology, 2018, 38(6): 43-51.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180606     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I6/43

Fig.1 The effects of initial pH on fermentation process
Fig.2 The full-wavelength scanning of the color of the fermentation broth at different fermentation time
Fig.3 The batch profile of cyclic glucans
Fig.4 The batch profile of cell growth and cyclic glucan production under pH control
pH Maximal biomass
/(g/L)
Final glucans production
/(g/L)
Yp/x/(g/g)
Cell growth stage Production stage
7.0 uncontrol 6.24 2.24 0.358
6.0 6.32 2.51 0.397
5.5 6.36 2.79 0.439
5.0 6.19 2.6 0.420
Table 1 Effect of different pH controlled on batch fermentation of cyclic glucans
Fig.5 The Monosaccharide compositions analysis (a)The target glucans (b) The standards (from 1 to 9: glucosamine, rhamnose, arabinose, galactosamine, galactose, glucose, xylose, mannose and fructose)
Fig.6 The MALDI-MS identification of the glucans
Observed mass m/z
[M+Na]+
Theor. Mass Assignment
2 777.8 2 754 CβG17
2 939.9 2 916 CβG18
3 101.9 3 078 CβG19
3 264.0 3 240 CβG20
3 426.0 3 402 CβG21
3 589.1 3 564 CβG22
Table 2 Analysis of MALDI-MS data of the fermentation broth
Fig.7 ESI-CID-MS/MS analysis of hydrolyzed target glucans
Fig.8 The FTIR spectra of the glucans
Fig.9 NMR spectroscopy of glucans from Rhizobium radiobacter NBRC13259 (a) 1H-NMR (b) 13C-NMR (c) The structure of cyclic β-1,2-glucans
[1]   Venkatachalam G, Gummadi S, Doble M . Cyclic β-glucans from microorganisms. Berlin: Springer Berlin Heidelberg, 2012: 53-62.
doi: 10.1007/978-3-642-32995-1
[2]   McIntire F C, Peterson W H, Riker A J . A polysaccharide produced by the crown-gall organism. Journal of Biological Chemistry, 1942,143(8):491-496.
doi: 10.1093/biomet/32.3-4.309
[3]   Anna M, Camino P G, Romain B , et al. Brucella β-1,2 cyclic glucan is an activator of human and mouse dendritic cells. Plos Pathogens, 2012,8(11):e1002983.
doi: 10.1371/journal.ppat.1002983 pmid: 23166489
[4]   Cho E, Jeong D, Choi Y , et al. Properties and current applications of bacterial cyclic β-glucans and their derivatives. Journal of Inclusion Phenomena & Macrocyclic Chemistry, 2016,85(3-4):1-11.
doi: 10.1007/s10847-016-0630-3
[5]   Zhang H, Palma A S, Zhang Y , et al. Generation and characterization of β1,2-gluco-oligosaccharide probes from Brucella abortus cyclic β-glucan and their recognition by C-type lectins of the immune system. Glycobiology, 2016,26(10):1086-1096.
doi: 10.1093/glycob/cww041 pmid: 5072146
[6]   Palma A S, Liu Y, Zhang H , et al. Unravelling glucan recognition systems by glycome microarrays using the designer approach and mass spectrometry. Molecular & Cellular Proteomics, 2015,14(4):974-988.
doi: 10.1074/mcp.M115.048272 pmid: 4390274
[7]   Roset M S, Ciocchini A E, Ugalde R A , et al. The Brucella abortus cyclic beta-1,2-glucan virulence factor is substituted with O-ester-linked succinyl residues. Journal of Bacteriology, 2006,188(14):5003-5013.
doi: 10.1128/JB.00086-06 pmid: 16816173
[8]   Arellano-Reynoso B, Lapaque N, Salcedo S , et al. Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nature Immunology, 2005,6(6):618-625.
doi: 10.1038/ni1202 pmid: 15880113
[9]   Rigano L A, Payette C, Brouillard G , et al. Bacterial cyclic beta-(1,2)-glucan acts in systemic suppression of plant immune responses. Plant Cell, 2007,19(6):2077-2089.
doi: 10.1105/tpc.106.047944
[10]   Abe M, Amemura A, Higashi S . Studies on cyclic β-1, 2-glucan obtained from periplasmic space of Rhizobium trifolii cells. Plant & Soil, 1982,64(3):315-324.
[11]   Bohin J P . Osmoregulated periplasmic glucans in Proteobacteria. Fems Microbiology Letters, 2000,186(1):11-19.
doi: 10.1016/S0378-1097(00)00110-5 pmid: 10779706
[12]   Breedveld M W , Zevenhuizen L P T M, Zehnder A J B . Osmotically-regulated trehalose accumulation and cyclic β-(1,2)-glucan excretion by Rhizobium leguminosarum biovar trifolii TA-1. Archives of Microbiology, 1991,156(6):501-506.
[13]   Breedveld M W , Zevenhuizen L P T M, Zehnder A J B . Osmotically induced oligo- and polysaccharide synthesis by Rhizobium meliloti SU-47. Journal of General Microbiology, 1990,136(12):2511-2519.
doi: 10.1099/00221287-136-12-2511
[14]   Pinho E, Henriques M, Soares G . Cyclodextrin/cellulose hydrogel with gallic acid to prevent wound infection. Cellulose, 2014,21(6):4519-4530.
doi: 10.1007/s10570-014-0439-4
[15]   Siemoneit U, Schmitt C, Alravez-Lorenzo C , et al. Acrylic/cyclodextrin hydrogels with enhanced drug loading and sustained release capability. International Journal of Pharmaceutics, 2006,312(1):66-74.
doi: 10.1016/j.ijpharm.2005.12.046 pmid: 16464549
[16]   Jeong D, Kim H K, Jeong J P , et al. Cyclosophoraose/cellulose hydrogels as an efficient delivery system for galangin, a hydrophobic antibacterial drug. Cellulose, 2016,23(4):1-17.
doi: 10.1007/s10570-015-0823-8
[17]   Breedveld M, Zevenhuizen T M , Zehnder A J B . Excessive excretion of cyclic β-(1,2)-glucan by Rhizobium trifolii TA-1. Applied & Environmental Microbiology, 1990,56(7):2080-2086.
[18]   Venkatachalam G, Srinivasan D, Doble M . Cyclicβ-(1,2)-glucan production by Rhizobium meliloti MTCC 3402. Process Biochemistry, 2013,48(12):1848-1854.
doi: 10.1016/j.procbio.2013.08.024
[19]   Yang F C, Liau C B . The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged culture. Process Biochemistry, 1998,33(5):547-553.
doi: 10.1016/S0032-9592(98)00023-5
[20]   Iztok D, Manfred K, David S , et al. Structure of bacterial extracellular polymeric substances at different pH values as determined by SAXS. Biophysical Journal, 2005,89(4):2711-2720.
doi: 10.1529/biophysj.105.061648
[21]   Lee J H, Kim J H, Kim M R , et al. Effect of dissolved oxygen concentration and pH on the mass production of high molecular weight pullulan by Aureobasidium pullulans. Journal of Microbiology and Biotechnology, 2002,12(1):1-7.
[22]   Breedveld M W, Miller K J . Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol Rev, 1994,58(2):145-161.
[23]   Trevelyan W E, Harrison J S . Studies on yeast metabolism. I. Fractionation and microdetermination of cell. Biochemical Journal. 1952,50(3):298-310.
doi: 10.1042/bj0500298 pmid: 14915949
[24]   张洪涛 . 微生物β-1,3-葡聚糖的强化合成及最小功能单元挖掘. 无锡: 江南大学, 2011.
[24]   Zhang H T . Enhancement of β-1,3-glucan production by Agrobacterium sp. and exploration of its minimal functional oligosaccharide sequence. Wuxi: Jiangnan University, 2011.
[25]   夏朝红, 戴奇, 房伟 , 等. 几种多糖的红外光谱研究. 武汉理工大学学报, 2007,9(1):4-7.
[25]   Xia C H, Dai Q, Fang W , et al. Research on the IR spectrscopy of kinds of polysaccharide. Journal of Wuhan University of Technology, 2007,9(1):4-7.
[26]   栾晓红, 赵峡, 王清池 . 缢蛏多糖的提取、分离和结构分析. 中国海洋药物, 2015,34(2):22-28.
[26]   Luan X H, Zhao X, Wang Q C . Extration, separation and structural characterization of poly saccharides from Sinonovacula Constricta. Chinese Journal of Marine Drugs, 2015,34(2):22-28.
[27]   Podlasek C A, Wu J, Stripe W A , et al.[13C]Enriched methyl aldopyranosides: structural interpretations of 13C-1H spin-coupling constants and 1H chemical shifts . Journal of the American Chemical Society, 1995,117(33):8635-8644.
doi: 10.1021/ja00138a020
[28]   Kawaharada Y, Kiyota H, Eda S , et al. Structural characterization of neutral and anionic glucans from Mesorhizobium loti. Carbohydrate research, 2008,343(14):2422-2427.
doi: 10.1016/j.carres.2008.07.007 pmid: 18667198
[29]   杨雪霞, 顾溯海, 高亮红 , 等. 环状β-1,2-葡聚糖的提纯与鉴定. 微生物学通报, 2001,28(3):45-49.
[29]   Yang X X, Gu S H, Gao H L , et al. Isolation and identification of cyclic β-(1,2)-glucans. Microbiology China, 2001,28(3):45-49.
[30]   王磊, 詹晓北, 朱一晖 , 等. pH控制对热凝胶发酵的影响. 生物工程学报, 2002,18(5):634-637.
doi: 10.3321/j.issn:1000-3061.2002.05.023
[30]   Wang L, Zhan X B, Zhu Y H , et al. Influence of pH control on the production of curdlan by Alcaligenes faecalis strain. Chinese Journal of Biotechnology, 2002,18(5):634-637.
doi: 10.3321/j.issn:1000-3061.2002.05.023
[1] Si-ming JIAO,Gong CHENG,Yu-chen ZHANG,Cui FENG,Li-shi REN,Jian-jun LI,Yu-guang DU. Expression of Chitinase from Trichoderma reesei and Analysis the Composition and Structure of its Hydrolysates[J]. China Biotechnology, 2018, 38(10): 30-37.
[2] SUN Cai-xia, WANG Ying, WU Xiao-fei, CHEN Li-jun, WU Zhi-jie. Metabonomic Study on the Composition of Insect-resistant Transgenic Cottonseeds[J]. China Biotechnology, 2012, 32(11): 35-41.
[3] SUN Cai-xia, WANG Ying, WU Xiao-fei, CHEN Li-jun, WU Zhi-jie. Metabonomic Study on the Composition of Insect-resistant Transgenic Cottonseeds[J]. China Biotechnology, 2012, 32(11): 35-41.
[4] TIAN Xiao-mei, REN Jian-hong, FANG Cong. Proteomic Analysis of Pichia pastoris GS115 Cultured in Different Carbon Source Mediums[J]. China Biotechnology, 2012, 32(01): 21-29.