Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (2): 30-37    DOI: 10.13523/j.cb.20180205
Orginal Article     
Gene Mining, Expression and Characterization of Novel R-mandelate Dehydrogenases
Cun-duo TANG1,2*,Hong-ling SHI1*,Yue MA1,Peng-ju DING1,Jian-he XU2**(),Yun-chao KAN1**(),Lun-guang YAO1**()
1 Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang 473061, China
2 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
Download: HTML   PDF(710KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

R-mandelate dehydrogenase plays a key role in the biosynthesis of phenylglyoxylic acid, thus exploiting nove R-mandelate dehydrogenase with higher catalytic activity and stability has significant economic value. In order to obtain the perfect R-mandelate dehydrogenase, a novel R-mandelate dehydrogenase was obtained by genome mining, named as LhDMDH, which was from Lactobacillus harbinensis. The specific activity of LhDMDH was 1264.3 U/mg, which was near to four times that of the probe and leading in the reported enzyme. Meanwhile, the main enzymatic characterizations of the four recombinant enzymes were researched. Their temperature optima were 25 to 30 ℃, and their pH optima were 9.0 to 9.5. The Kcat of LhDMDH is 30.28 S -1, which is obviously higher than the others. In addtion, the results of substrate spectrum of R-mandelate dehydrogenases indicated that the LhDMDH could have advantages over other enzymes in chiral resolution of racemic mandelic acid and the biosynthesis of phenylglyoxylic acid. This gained ideal results in genome mining of R-mandelate dehydrogenases, established a solid foundation for further transformation and application, and provided a useful experience for the exploiting of other enzymes.



Key wordsMandelate dehydrogenase      Genome mining      Expression      Enzymatic characterization      Biocatalysis     
Received: 24 October 2017      Published: 21 March 2018
ZTFLH:  Q819  
Cite this article:

Cun-duo TANG,Hong-ling SHI,Yue MA,Peng-ju DING,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Gene Mining, Expression and Characterization of Novel R-mandelate Dehydrogenases. China Biotechnology, 2018, 38(2): 30-37.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180205     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I2/30

Primer name Product description Primer sequence (5'-3') Accession number
SeDMDH-F DMDH from Salmonella enterica CGCGGATCCATGAAAATTGCAATCGCAGG WP_058112521.1
SeDMDH-R CCGCTCGAGTTGCGCTTCTTTAGCGTGAA
LlDMDH1-F DMDH1 from Lactococcus lactis CGCGGATCCATGAAAATCGCAATAGCAGG WP_075525716.1
LlDMDH1-R CCGCTCGAGATGCGCCTCTAAAATTTCTTC
LlDMDH2-F DMDH2 from Lactococcus lactis CGCGGATCCATGAGAATCACAATTGCCGGT WP_011676318.1
LlDMDH2-R CCGCTCGAGTTTCGCCTTTAATAACTCTT
SaDMDH-F DMDH from Staphylococcus aureus CGCGGATCCATGTACAAAATAGCCATAG WP_031797626.1
SaDMDH-R CCGCTCGAGTAATTTTGATTCTAATTGGT
Primer name Product description Primer sequence (5'-3') Accession number
KoDMDH-F DMDH from Klebsiella oxytoca CGCGGATCCATGAAAATTGCAATCGCAG WP_004104561.1
KoDMDH-R CCGCTCGAGTTGCGCTTCTTTTGCGTGAAT
LcDMDH-F DMDH from Leuconostoc citreum CGCGGATCCATGAAAATAGCTATTGCAGGA WP_036058586.1
LcDMDH-R CCGCTCGAGAATTTCAAAGTTTTCTTGCT
Table 1 Sequences of the primers used for cloning and expression of novel R-mandelate dehydrogenases
Fig.1 The PCR amplification for the four R-mandelate dehydrogenase geneM: DNA marker; 1: LlDMDH1; 2: LlDMDH2; 3: KoDMDH; 4: SeDMDH; 5: SaDMDH; 6: LcDMDH
Fig.2 The bacterial colonies PCR identification for the recombinant E.coliM: DNA marker; 1: BL21/pET28a-LlDMDH1; 2: BL21/pET28a-LlDMDH2; 3: BL21/pET28a-KoDMDH; 4: BL21/pET28a-LcDMDH; 5: BL21/pET28a-LpDMDH; 6: BL21/pET28a-SsDMDH; 7: BL21/pET28a-CbDMDH; 8: BL21/pET28a-LhDMDH
Fig.3 The SDS-PAGE analysis for the representative recombinant R-mandelate dehydrogenasesM: PageRuler Prestained Protein Ladder; 1: Expressed products of BL21/pET28a; 2: Crude LbDMDH; 3: Purified LbDMDH; 4: Crude LhDMDH; 5: Purified LhDMDH; 6: Crude LcDMDH; 7: Purified LcDMDH; 8: Crude LlDMDH-2; 9: Purified LlDMDH-2
Fig.4 The temperature optima of recombinant R-mandelate dehydrogenases
Fig.5 The temperature stability of recombinant R-mandelate dehydrogenases
Fig.6 The pH optima of recombinant R-mandelate dehydrogenases
Fig.7 The pH stability of recombinant R-mandelate dehydrogenases
Enzyme Kinetic parameter of substrate
Km (mmol/L) Kcat (S-1) Ki (mmol/L) Kcat/Km (S-1 mmol/L-1)
LbDMDH 1.45 8.82 24.37 6.08
LhDMDH 1.05 30.28 26.40 28.80
LcDMDH 1.75 1.56 24.86 0.89
LlDMDH-2 1.00 2.29 16.25 2.29
Table 2 The kinetic parameter of R-mandelate dehydrogenases for R-mandelate acid
Enzyme Kinetic parameter of NAD+
Km (mmol/L) Kcat (S-1) Ki (mmol/L) Kcat/Km (S-1 mmol/L-1)
LbDMDH 0.78 9.23 N 11.83
LhDMDH 0.40 29.05 N 72.00
LcDMDH 0.85 1.86 N 2.19
LlDMDH-2 0.42 1.85 N 4.40
Table 3 The kinetic parameter of R-mandelate dehydrogenases for NAD+
Substrate Relative activity (%)
LbDMDH LhDMDH LcDMDH LlDMDH-2
R-mandelate acid 100 100 100 100
R-2-chloromandelic acid 0.59 0.28 2.51 0.05
S-mandelate acid 0.04 0.02 0 0
S-2-chloromandelic acid 0 0 0 0
L-lactic acid 0 0 0 0
Table 4 The substrate spectrum of R-mandelate dehydrogenases
[1]   张捷龙, 雷进海 . 苯甲酰甲酸的合成与应用. 浙江化工, 2008(12):13-15.
doi: 10.3969/j.issn.1006-4184.2008.12.006
[1]   Zhang J L, Lei J H . Synthesis and application of benzoylformic acid. Zhejiang Chemical Industry, 2008(12):13-15.
doi: 10.3969/j.issn.1006-4184.2008.12.006
[2]   戴志宏 . 苯甲酰甲酸及其甲酯的合成. 合肥: 合肥工业大学, 2012.
[2]   Dai Z H . Synthesis of benzoylformic acid and its methyl ester. Hefei: Hefei University of Technology, 2012.
[3]   曾侦 . 扁桃酸消旋酶和扁桃酸脱氢酶基因的克隆及表达. 南京: 南京理工大学, 2009.
doi: 10.7666/d.y1542527
[3]   Zhen Z . Cloning and expression of mandelate racemase gene and S-mandelate dehydrogenase. Nanjing: Nanjing University of Science and Technology, 2009.
doi: 10.7666/d.y1542527
[4]   Wang J, Feng J, Li W , et al. Characterization of a novel (R)-mandelate dehydrogenase from Pseudomonas putida NUST506. J Mol Catal B: Enzym, 2015,120:23-27.
doi: 10.1016/j.molcatb.2015.04.017
[5]   范长伟 . D-扁桃酸脱氢酶的基因挖掘及在多酶偶联合成L-苯甘氨酸的应用. 上海:华东理工大学, 2014.
[5]   Fan C W . Discovery and application of novel D-mandelate dehydrogenase in multienzymatic synthesis of L-phenylglycine. Shanghai: East of China University of Science and Technology, 2014.
[6]   Yamazaki Y, Maeda H . Enzymatic synthesis of optically pure (R)-mandelic acid and other 2-hydroxycarboxylic acids: Screening for the enzyme, and its purification, characterization and use. Agricultural and Biological Chemistry, 1986,50(10):2621-2631.
doi: 10.1080/00021369.1986.10867782
[7]   Hummel W, Schütte H, Kula M R . Mandelic acid dehydrogenase from Lactobacillus curvatus. Appl Microbiol Biotechnol, 1988,28(4):433-439.
doi: 10.1007/BF00268209
[8]   Fan C W, Xu G C, Ma B D , et al. A novel D-mandelate dehydrogenase used in three-enzyme cascade reaction for highly efficient synthesis of non-natural chiral amino acids. J Biotechnol, 2015,195:67-71.
doi: 10.1016/j.jbiotec.2014.10.026 pmid: 25449542
[9]   唐存多, 史红玲, 蔚晓华 , 等. 新型GH5家族β-甘露聚糖酶的基因挖掘及表达鉴定. 食品科学, 2016,37(11):90-96.
doi: 10.7506/spkx1002-6630-201611016
[9]   Tang C D, Shi H L, Yu X H , et al. Gene mining, expression and characterization of novel GH5 family β-mannanases. Food Science, 2016,37(11):90-96.
doi: 10.7506/spkx1002-6630-201611016
[10]   唐存多, 史红玲, 唐青海 , 等. 生物催化剂发现与改造的研究进展. 中国生物工程杂志, 2014,34(9):113-121.
doi: 10.13523/j.cb.20140917
[10]   Tang C D, Shi H L, Tang Q H . Rencent trends in discovery and protein engineering of biocatalysts. China Biotechnology, 2014,34(9):113-121.
doi: 10.13523/j.cb.20140917
[11]   Furuya T, Kino K . Genome mining approach for the discovery of novel cytochrome P450 biocatalysts. Appl Microbiol Biotechnol, 2010,86(4):991-1002.
doi: 10.1007/s00253-010-2450-5 pmid: 20177889
[12]   Gong J S, Lu Z M, Li H , et al. Metagenomic technology and genome mining: emerging areas for exploring novel nitrilases. Appl Microbiol Biotechnol, 2013,97(15):6603-6611.
doi: 10.1007/s00253-013-4932-8 pmid: 23801047
[13]   Tang C D, Shi H L, Tang Q H , et al. Genome mining and motif truncation of glycoside hydrolase family 5 endo-beta-1, 4-mannanase encoded by Aspergillus oryzae RIB40 for potential konjac flour hydrolysis or feed additive. Enzyme Microb Technol, 2016, 93- 94:99-104.
[14]   Xiao Z, Wu M, Grosse S , et al. Genome mining for new alpha-amylase and glucoamylase encoding sequences and high level expression of a glucoamylase from Talaromyces stipitatus for potential raw starch hydrolysis. Appl Biochem Biotechnol, 2014,172(1):73-86.
doi: 10.1007/s12010-013-0460-3 pmid: 24046254
[15]   Zhu D, Mukherjee C, Biehl E R , et al. Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicum USDA110 by rational genome mining. J Biotechnol, 2007,129(4):645-650.
doi: 10.1016/j.jbiotec.2007.02.001 pmid: 17350705
[16]   Barriuso J, Prieto A, Martínez M J . Fungal genomes mining to discover novel sterol esterases and lipases as catalysts. BMC Genomics, 2013,14:712.
doi: 10.1186/1471-2164-14-712 pmid: 24138290
[17]   马晨露, 唐存多, 史红玲 , 等. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成. 中国生物工程杂志, 2015,35(12):65-71.
doi: 10.13523/j.cb.20151210
[17]   Ma C L, Tang C D, Shi H L , et al. Semi rational modification of cephalosporin C acylase and biosynthesis of 7-ACA. China Biotechnology, 2015,35(12):65-71.
doi: 10.13523/j.cb.20151210
[18]   Hu D, Tang C, Li C , et al. Stereoselective hydrolysis of epoxides by reVrEH3, a novel Vigna radiata epoxide hydrolase with high enantioselectivity or high and complementary regioselectivity. J Agr Food Chem, 2017,65(45):9861-9870.
doi: 10.1021/acs.jafc.7b03804 pmid: 29058432
[19]   Tang C D, Li J F, Wei X H , et al. Fusing a carbohydrate-binding module into the Aspergillus usamii β-mannanase to improve its thermostability and cellulose-binding capacity by In Silico Design. Plos One, 2013,8(5):e64766.
doi: 10.1371/journal.pone.0064766 pmid: 23741390
[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[3] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[4] LIU Mei-qin,GAO Bo,JIAO Yue-ying,LI Wei,YU Jie-mei,PENG Xiang-lei,ZHENG Yan-peng,FU Yuan-hui,HE Jin-sheng. Long Non-coding RNA Expression Profile in A549 Cells Infected with Human Respiratory Syncytial Virus[J]. China Biotechnology, 2021, 41(2/3): 7-13.
[5] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[6] YANG Xi,LUAN Yu-shi. Preliminary Study of Sly-miR399 in Tomato Resistance to Late Blight[J]. China Biotechnology, 2021, 41(11): 23-31.
[7] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[8] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[9] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[10] DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong. Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy[J]. China Biotechnology, 2020, 40(8): 24-32.
[11] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[12] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[13] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.
[14] CHENG Xu,YANG Yu-qing,WU Sai-nan,HOU Qin-long,LI Yong-mei,HAN Hui-ming. Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response[J]. China Biotechnology, 2020, 40(7): 41-50.
[15] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.