Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (2): 109-115    DOI: 10.13523/j.cb.20180216
Orginal Article     
Research Progress on Xylose Transporters of Saccharomyces cerevisiae
Jun HUANG1,2(),Ren-zhi WU1,2,Qi LU1,2,Zhi-long LU1,2
1 National Engineering Research Center for Non-Food Biorefinery, Nanning 530007, China
2 State Key Laboratory of Non-Food Biomass and Enzyme Technology, Nanning 530007, China
Download: HTML   PDF(543KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Technologies for the production of biothanol are receiving increased attention around the world owing to concerns over the global warming. Lignocellulosic biomass is a great potential resource for the production of biofuels because it is largely abundant, inexpensive and renewable organic material. Significant efforts, many of which have been successful, have been made to convert these lignocellulosic biomass to valuable products, such as biofuels. Sustainable development in lignocellulosic bioethanol production has major challenge due to high cost of production. There are several issues such as efficient utilization of pentose sugars present in lignocelluloses, economical production of lignocellulolytic enzymes with high specificity, cost-effective pre-treatment of lignocellulosic biomass, etc. Genetically modified yeast strains have been approached to utilize pentose and hexose sugars for bioethanol production. However, these strains showed limited xylose consumption. Saccharomyces cerevisiae rely on the capacity of endogenous hexose transporters for xylose uptake, since S. cerevisiae lacks a xylose-specific transport system. Hence, there are several strategies that have been applied to engineer the yeasts which could improve the xylose transportation. latest advancements in S. cerevisiae xylose transporter genes were discussed.



Key wordsXylose      Transporter gene      Saccharomyces cerevisiae     
Received: 01 August 2017      Published: 21 March 2018
ZTFLH:  Q819  
Cite this article:

Jun HUANG,Ren-zhi WU,Qi LU,Zhi-long LU. Research Progress on Xylose Transporters of Saccharomyces cerevisiae. China Biotechnology, 2018, 38(2): 109-115.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180216     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I2/109

酵母 木糖转运方式 葡萄糖转运方式
休哈塔假丝酵母(Candida shehatae) 主动扩散系统/质子协运系统,两者都存在 主动扩散系统/质子协运系统,两者都存在
产朊假丝酵母(Candida utilis) 质子协运系统 质子协运系统
马克斯克鲁维酵母(Kluyveromyces marxianus) 主动扩散系统 质子协运系统
酿酒酵母(Saccharomyces cerevisiae) 主动扩散系统 主动扩散系统
树干毕赤酵母 (Pichia stipitis) 质子协运系统 质子协运系统
Table 1 Xylose and glucose transport systems in yeast
Fig.1 Xylose transportation and fermentation in yeast
转运基因 木糖 葡萄糖
Km(mmol/L) Vmax(nmol/min/mgDW) Km(mmol/L) Vmax(nmol/min/mgDW)
XltA 0.09±0.03 1.08±0.05 0.07±0.01 1.11±0.15
XltB 15.0±4.5 0.10±0.00 ND ND
XltC 4.71±1.04 0.14±0.01 0.11±0.02 1.18±0.15
Str1 5.70±0.19 0.04±0.01 0.01±0.00 0.14±0.04
Str2 6.18±0.81 0.12±0.02 0.05±0.01 0.69±0.19
Str3 2.19±0.29 0.46±0.04 0.06±0.01 1.31±0.33
Table 2 Kinetics parameters of fungal transporters
转运基因 木糖 葡萄糖 参考文献
Km(mmol/L) Vmax(nmol/min/mg) Km(mmol/L) Vmax(nmol/min/mg)
HXT1 880±8 750±94 NR NR [33]
HXT4 170±120 190±23 NR NR [33]
HXT7 130±10 110±7 NR NR
HXT7 200.3±13.2 67±2 0.5±0.1 26±1.1 [27]
HXT7(N370S) 169.9±26.3 24.1±1.6 10.8±1.0 47.3±1.2
GAL2 225.6±15.8 91.3±3.2 1.5±0.2 27.2±0.9 [27]
GAL2(N376F) 91.4±8.9 37.3±1.3 ND ND [28]
GXF1 48.6±6.5 64.19 2.0±0.6 10.5 [21]
GXS1 0.4±0.1 6.5±1.5 0.012 4.3±0.3
GSX1 0.026±0.066 0.0072 NR NR [34]
GSX1 F38I39M40 0.721±0.116 0.015 NR NR
SUT1 145±1.0 132±1.0 1.5±0.1 45.0±1.0 [34]
SUT4 16.6±0.3 122±2.4 1.3±0.1 105±4.2 [35]
XUT1 0.46±0.02 116±5.8 0.91±0.01 80±1.0
XYP29 56±9.4 0.69±0.04 ND ND [36]
AN25 175.7±21.4 0.61±0.05 ND ND
HXT36 108 62.5 6 60
HXT36(N367I) 40 23 ND ND [25]
HXT36(N367A) 25 29 171 71
Table 3 Kinetic parameters of yeast xylose transporters
[1]   黄俊, 陈东, 黄日波 . 纤维小体在燃料乙醇中的应用. 中国生物工程杂志, 2011,31(1):103-108.
[1]   Huang J, Chen D, Huang R B . Research progress in cellulosome application in bio-ethnol China Biotechnology, 2011,31(1):103-108.
[2]   陈曦, 韩志群, 孔繁华 , 等. 生物质能源的开发与利用. 化学进展, 2007,19(7/8):1091-1097.
[2]   Chen X, Han Z Q, Kong F H , et al. Exploitation and utilization of bio-energy Progress in Chemistry, 2007,19(7/8):1091-1097.
[3]   Danuza N M, Viviane C B, Ricardo M A , et al. Xylose fermentation by Saccharomyces cerevisiae: Challenges and prospects. International Journal of Molecular Sciences, 2016,17(3):207.
doi: 10.3390/ijms17030207 pmid: 4813126
[4]   王娜, 袁文杰, 白凤武 . 酵母菌木糖转运蛋白研究进展. 中国农业科技导报, 2012,14(4):24-30.
doi: 10.3969/j.issn.1008-0864.2012.04.04
[4]   Wang N, Yuan W J, Bai F W , et al. Research progress on xylose transporters in yeast Journal of Agricultural Science and Technology, 2012,14(4):24-30.
doi: 10.3969/j.issn.1008-0864.2012.04.04
[5]   Almeida J R, Runquist D, Sànchez N V , et al. Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnology Journal, 2011,6(3):286-299.
doi: 10.1002/biot.201000301 pmid: 21305697
[6]   Peng B, Huang S, Liu T , et al. Bacterial xylose isomerases from the mammal gut bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation. Microbial Cell Factories, 2015,14(1):70.
doi: 10.1186/s12934-015-0253-1 pmid: 4436767
[7]   Alexander F, Stefan B, Virginia S , et al. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. PNAS, 2014,111(14):5159-5164.
doi: 10.1073/pnas.1323464111 pmid: 24706835
[8]   Sabire Z, Mark J . Function and regulation of yeast hexose transporters. Microbiology and Molecular Biology Reviews, 1999,63(3):554-569.
[9]   Sharma N K, Behera S, Arora R , et al. Potential Role of Xylose Transporters in Industrial Yeast for Bioethanol Production: A Perspective Review. Proceedings of the First International Conference on Recent Advances in Bioenergy Research. Springer, New Delhi, 2016, 81-93.
[10]   Matsushika A, Himyuki I , Kodaki T,et a1.Ethanol production from xylose in engineered Saccharomyces cereviziae strains:current state and perspectives. Applied Microbiology and Biotechnology, 2009,84(1):37-53.
doi: 10.1016/S0921-5107(02)00735-3 pmid: 19572128
[11]   Reifenberger E, Boles E, Ciriacy M , et al. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. European Journal of Biochemistry, 1997,245(2):324-333.
doi: 10.1111/ejb.1997.245.issue-2
[12]   Diderich J A, Schepper M, Hoek P , et al. Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. Journal of Biological Chemistry, 1999,274(22):15350-15359.
doi: 10.1074/jbc.274.22.15350 pmid: 10336421
[13]   Sedlak M, Ho N W . Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast, 2004,21(8):671-684.
doi: 10.1002/yea.1060 pmid: 15197732
[14]   Davi L G, Akinori M, Belisa B S , et al. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzyme and Microbial Technology, 2014,63:13-20.
doi: 10.1016/j.enzmictec.2014.05.003 pmid: 25039054
[15]   DeRisi J L, Iyer V R, Brown P O . Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 1997,278(5338):680-686.
doi: 10.1126/science.278.5338.680
[16]   ?zcan S, Johnston M . Function and regulation of yeast hexose transporters. Microbiology and Molecular Biology Reviews, 1999,63(3):554-569.
[17]   Apel A R, Ouellet M, Szmidt-Middleton H , et al. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Scientific Reports, 2016,6.
[18]   Hamacher T, Becker J, Gárdonyi M , et al. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology, 2002,148(9):2783-2788.
doi: 10.1099/00221287-148-9-2783 pmid: 12213924
[19]   Lee W J, Kim M D, Ryu Y W , et al. Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2002,60(1):186-191.
doi: 10.1007/s00253-002-1085-6 pmid: 12382062
[20]   Eric Y, Ashley P, Austin C , et al. Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Applied Microbiology and Biotechnology, 2011,77(10):3311-3319.
[21]   Leandro M J, Goncalves P, Spencer M . Two glucose/xylose transporter genes from the yeast Ca,zdida imermedia:first molecular characterization of a yeast xylose-H +symporter . Biochemical Journal, 2006,395(3):543-549.
doi: 10.1042/BJ20051465 pmid: 16402921
[22]   Thomas W J . Engineering yeasts for xylose metabolism. Current Opinion in Biotechnology, 2006,17(3):320-326.
doi: 10.1016/j.copbio.2006.05.008 pmid: 16713243
[23]   Du J, Lia S J, Zhao H M . Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Molecular BioSystems, 2010,6(11):2150-2156.
doi: 10.1039/c0mb00007h pmid: 20714641
[24]   Reis T F, Lima P B, Parachin N S , et al. Identification and characterization of putative xylose and cellobiose transporters in Aspergillus nidulans. Biotechnology for Biofuels, 2016,9(1):204.
doi: 10.1186/s13068-016-0611-1 pmid: 5037631
[25]   Ana C C, Laure N A, Neil A B , et al. Functional characterization of a xylose transporter in Aspergillus nidulans. Biotechnology for Biofuels, 2014,7(1):46.
doi: 10.1186/1754-6834-7-46 pmid: 24690493
[26]   Jasper S, Juan A T, Dorett I O , et al. Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei. Biotechnology for Biofuels, 2016,9(1):148.
doi: 10.1186/s13068-016-0564-4 pmid: 4955148
[27]   Farwick A, Bruder S, Schadeweg V , et al. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. PNAS, 2014,111(14):5159-5164.
doi: 10.1073/pnas.1323464111 pmid: 24706835
[28]   Shin H Y, Nijland J G, Waal P P , et al. An engineered cryptic Hxt11 sugar transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2015,8(1):176.
doi: 10.1186/s13068-015-0360-6 pmid: 4630928
[29]   Young E M, Tong A, Bui H , et al. Rewiring yeast sugar transporter preference through modifying a conserved protein motif. PNAS, 2013,111(1):131-136.
doi: 10.1073/pnas.1311970111 pmid: 24344268
[30]   Jeroen G N, Hyun Y S, René M J , et al. Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2014,7(1):168.
doi: 10.1186/s13068-014-0168-9 pmid: 4263072
[31]   Young E M, Comer A D, Huang H , et al. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metabolic Engineering, 2012,14(4):401-411.
doi: 10.1016/j.ymben.2012.03.004 pmid: 22445945
[32]   Wang M, Yu C, Zhao H . Directed evolution of xylose specific transporters to facilitate glucose‐xylose co‐utilization. Biotechnology and Bioengineering, 2016,113(3):484-491.
doi: 10.1002/bit.25724 pmid: 26284760
[33]   Saloheimo A, Rauta J, Stasyk O V , et al. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Applied Microbiology and Biotechnology, 2007,74(5):1041-1052.
doi: 10.1007/s00253-006-0747-1
[34]   Weierstall T, Hollenberg C P, Boles E . Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Molecular Microbiology, 1999,31(3):871-883.
doi: 10.1046/j.1365-2958.1999.01224.x pmid: 10048030
[35]   Ferreira D, Nobre A, Silva M L , et al. XYLH encodes a xylose/H + symporter from the highly related yeast species Debaryomyces fabryi and Debaryomyces hansenii . FEMS Yeast Research. 2013,13(7):585-596.
doi: 10.1111/fyr.2013.13.issue-7
[36]   Du J, Li S, Zhao H . Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Molecular Biosystems, 2010,6(11):2150-2156.
doi: 10.1039/c0mb00007h pmid: 20714641
[1] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[2] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[3] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[4] ZHANG Wei, LIU Duo, LI Bing-zhi, YUAN Ying-jin. Construction and Optimization of p-coumaric Acid Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2017, 37(9): 89-97.
[5] LI Bo, LIANG Nan, LIU Duo, LIU Hong, WANG Ying, XIAO Wen-hai, YAO Ming-dong, YUAN Ying-jin. Metabolic Engineering of Saccharomyces cerevisiae for Production of 8-Dimenthylally Naringenin[J]. China Biotechnology, 2017, 37(9): 71-81.
[6] MA Ze-lin, LIU Jia-heng, HUANG Xu, CAIYIN Qing-gele, ZHU Hong-ji. Research Progress on Utilization of Lignocellulosic Biomass by Microorganisms[J]. China Biotechnology, 2017, 37(6): 124-133.
[7] CHEN Zhen, CHEN Xian-zhong, ZHANG Li-hua, WANG Jun-hua, SHEN Wei, FAN You. Metabolic Engineering of Candida tropicalis for Xyltiol Production from Xylose Mother Liquor[J]. China Biotechnology, 2017, 37(5): 66-75.
[8] LIU Bao-li, LIU Gao-gang, LIN Qiu-hui, LI Bing-zhi, YUAN Ying-jin. Construction of Recombinant Xylose-utilizing Saccharomyces cerevisiae by Three-plasmid Co-transformation Combinatorial Screening Method[J]. China Biotechnology, 2016, 36(12): 86-97.
[9] LU Hong-ying, HE Hu, LIU Zao, WANG Yong-ze, WANG Jin-hua. Engineering of an Escherichia coli Strain LHY02 for Production of Optically Pure D-lactic Acid from Xylose[J]. China Biotechnology, 2014, 34(12): 91-96.
[10] XU Yong, SHEN Chong, QIU Xing-tian, CAI Peng, HUANG Min-ren, YU Shi-yuan. Screening and Analysis of Genes Related to Xylose Fermentation to Ethanol in Candida tropiclis[J]. China Biotechnology, 2012, 32(11): 61-69.
[11] XU Yong, SHEN Chong, QIU Xing-tian, CAI Peng, HUANG Min-ren, YU Shi-yuan. Screening and Analysis of Genes Related to Xylose Fermentation to Ethanol in Candida tropiclis[J]. China Biotechnology, 2012, 32(11): 61-69.
[12] XU Yong, WANG Xun, ZHU Jun-jun, YONG Qiang, YU Shi-yuan. A New Way for Bioconversion of Xylose in High Efficiency[J]. China Biotechnology, 2012, 32(05): 113-119.
[13] GUO Yong-an, TENG Ya-qun, ZHU Ouhaodi, DAU Yi-chen, ZHA Jing-jing, ZHU Xu, ZENG Xiao, XING Xiao-xue, Mitchell Bieniek, Garrett Flack, LV Ji-hua. Study on the Ability of Butanol Production of Different Bacteria with the Fermentable Sugar[J]. China Biotechnology, 2012, 32(03): 91-99.
[14] . Succinate Production from Escherichia coli Mutant QQS101 Fermentation[J]. China Biotechnology, 2010, 30(10): 0-0.
[15] LI Yi-kui, KANG Jun-hua, KANG Zhen, GENG Yan-ping, WANG Yi-hua, QI Qing-sheng. Succinate Production from Escherichia coli Mutant QQS101 Fermentation[J]. China Biotechnology, 2010, 30(10): 39-43.