Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (12): 77-83    DOI: 10.13523/j.cb.20171211
Orginal Article     
Ethylene Glycol Diglycidyl Ether Cross-linked with Sodium Alginate- carboxymethyl Cellulose to Immobilize Lipase
Shan XU1,Ren-qiang LI1,Ji-fu ZHANG4,Yun ZHANG2,3,Ai-jun SUN2,3,Yun-feng Hu2,3*()
1 Department of Biotechnology, Jinan University, Guangzhou 510632, China
2 Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology,Chinese Academy of Sciences, Guangzhou 510301, China
3 Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology,Chinese Academy of Sciences, Guangzhou 510301, China
4 Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
Download: HTML   PDF(999KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Sodium alginate and carboxymethyl cellulose sodium were used as the carriers to immobilize lipase, using ethylene glycol diglycidyl ether (EGDE) and glutaraldehyde as the cross-linking agent, respectively. The results showed that EGDE was superior to glutaraldehyde and was the most effective cross-linking agent. The optimal conditions for lipase immobilized were as follows: sodium alginate 2.5%, carboxymethyl cellulose sodium 1.5%, enzyme loading 800U/ml, CaCl2 5%, EGDE 0.02%, and immobilization time 30 min. Under above optimized conditions, the activity of immobilized lipase was about 380 U/g, and the recovery of the enzyme activity of the immobilized lipase reached about 50.09%. Compared with those from free lipase, the optimal pH (8.0)and temperature (45℃) were higher. The thermal stability of immobilized lipase was better than that of free lipase, and the immobilized lipase could be reused for seven times and still retained about 60% activity.



Key wordsSodium alginate      Carboxymethyl cellulose sodium      Ethylene glycol diglycidyl ether      Immobilized enzyme     
Received: 23 August 2017      Published: 16 December 2017
ZTFLH:  Q819  
Cite this article:

Shan XU,Ren-qiang LI,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng Hu. Ethylene Glycol Diglycidyl Ether Cross-linked with Sodium Alginate- carboxymethyl Cellulose to Immobilize Lipase. China Biotechnology, 2017, 37(12): 77-83.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20171211     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I12/77

Fig.1 Effect of different carriers on the immobilization of lipase
Fig.2 The optimization of conditions of immobilized lipase
(a) Effect of sodium alginate concentration on the activity of immobilized lipase (b) Effect of carboxymethyl cellulose sodium concentration on the activity of immobilized lipase (c) Effect of enzyme loading on lipase immobilization (d) Effect of CaCl2 concentration on the activity of immobilized lipase (e) Effect of buffer pH on the activity of immobilized lipase (f) Effect of immobilization time on the activity of immobilized lipase
试验号 A(海藻酸钠浓度%) B (CMC浓度%) C(氯化钙浓度%) D(固定化时间min) 固定效率%
1 1(1.5) 1(0.75) 1(4) 1(30) 24.58
2 1 2(1) 2(5) 2(40) 35.61
3 1 3(1.5) 3(6) 3(50) 38.18
4 2(2) 1 2 3 32.09
5 2 2 3 1 33.77
6 2 3 1 2 36.74
7 3(2.5) 1 3 2 30.45
8 3 2 1 3 35.22
9 3 3 2 1 39.34
k1 32.79 29.04 32.18 32.56
k2 34.20 34.87 35.68 34.27
k3 35.00 38.09 34.13 35.16
R 2.21 9.05 3.50 2.60
Table 1 Results and analysis of orthogonal experiments for the optimization of immobilized condition of lipase
Fig.3 The optimization of conditions of crosslinking immobilized lipase
(a) Effect of crosslinking agent on the activity of immobilized lipase (b) Effect of crosslinking time with glutaraldehyde on the activity of immobilized lipase (c) Effect of crosslinking time with EGDE on the activity of immobilized lipase (d) The operation stability of immobilized lipase
Fig.4 The properties of immobilized and free lipase
(a) Optimal reaction pH of immobilized and free lipase (b) Optimal reaction temperature of immobilized and free lipase (c) Thermal stability of immobilized and free lipase
[1]   刘自琴 . 脂肪酶和胰蛋白酶的固定化及共固定化研究. 广州:华南理工大学, 2012,12.
[1]   Liu Z Q . A study on immobilization of lipase and trypsin and their co-immobilization. Guangzhou: South China University of Technology, 2012,12.
[2]   Hemachander C, Puvanakrishnan R . Lipase from Ralstonia pickettii as an additive in laundry detergent formulations. Process Biochemistry, 2000,35(8):809-814.
doi: 10.1016/S0032-9592(99)00140-5
[3]   Jaeger K E, Eggert T . Lipases for biotechnology. Curr Opin Biotechnol, 2002,13(4):390-397.
doi: 10.1016/S0958-1669(02)00341-5
[4]   Nagao T, Shimada Y, Sugihara A , et al. Use of thermostable Fusarium heterosporum lipase for production of structured lipid containing oleic and palmitic acids in organic solvent-free system. Journal of the American Oil Chemists’ Society, 2001,78(2):167-172.
doi: 10.1007/s11746-001-0238-7
[5]   李庆龙 . 面粉工业的发展与酶制剂的应用前景. 西部粮油科技, 2001,26(1):3-10.
[5]   Li Q L . The development of flour industy and application prospect of agent medium. China Western Cereals & Oils Technology, 2001,26(1):3-10.
[6]   刘海洲, 吴小飞, 牛佰慧 , 等. 脂肪酶在食品工业中的应用与研究进展. 粮食加工, 2008,33(5):55-57.
[6]   Liu H Z, Wu X F, Niu B H , et al. The application of lipase in food industy and progress. Grain Processing, 2008,33(5):55-57.
[7]   Houde A, Kademi A, Leblanc D . Lipases and their industrial applications: an overview. Applied Biochemistry and Biotechnology, 2004,118(1-3):155-170.
doi: 10.1385/ABAB:118:1-3
[8]   Degroot A R, Neufeld R J . Encapsulation of urease in alginate beads and protection from α-chymotrypsin with chitosan membranes. Enzyme and Microbial Technology, 2001,29(6):321-327.
doi: 10.1016/S0141-0229(01)00393-3
[9]   袁勤生. 现代酶学. 第二版. 上海:华东理工大学出版社, 2007. 245.
[9]   Yuan Q S. Modern Enzymology. 2nd ed. Shanghai: East China University of Science and Technology Press, 2007. 245.
[10]   Fernando L G, Lorena B, Cesar M , et al. Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. J Biotechnol, 2005,119:70-75.
doi: 10.1016/j.jbiotec.2005.05.021 pmid: 16039744
[11]   Powell L W . Developments in immobilized-enzyme technology. Biotechnology & Genetic Engineering Reviews, 1984,2(1):409-438.
doi: 10.1080/02648725.1984.10647807 pmid: 6400193
[12]   徐莉, 侯红萍 . 酶的固定化方法的研究进展. 酿酒科技, 2010,1:86-89.
[12]   Xu L, Hou H P . Research progress in the immobilization enzyme. Liquor-Making Science & Technology, 2010,1:86-89.
[13]   Tosa T, Mori T, Fuse N , et al. Studies on continuous enzyme reactions Part V kinetic and industrial application of aminoacylase column for continuous optical resolution of acyl-dl-amino acids. Biotechnol and Bioengineering, 1967,9(4):603-615.
doi: 10.1002/bit.260090413
[14]   袁定重, 张秋禹, 侯振宇 , 等. 固定化酶载体材料的最新研究进展. 材料报道, 2006,20(1):69-72.
doi: 10.3321/j.issn:1005-023X.2006.01.018
[14]   Yuan D C, Zhang Q Y, Hou Z Y , et al. The latest research advance of immobilized enzyme, carriers. Materials Review, 2006,20(1):69-72.
doi: 10.3321/j.issn:1005-023X.2006.01.018
[15]   雷生姣, 王可兴, 吕晓燕 , 等. 聚乙烯醇-海藻酸钙固定化柚苷酶. 食品科学, 2011,32(3):138-143.
[15]   Lei S J, Wang K X, Lv X Y , et al. Immobilization of naringinase on PVA-calcium alginate gel. Food Science, 2011,32(3):138-143.
[16]   Tanabe T, Okitsu N, Yamauchi K . Fabrication and characterization of chemically cross-linked keratin films. Materials Science and Engineering C, 2004,24(3):441-446.
doi: 10.1016/j.msec.2003.11.004
[17]   Bershtein V A, Egorova L M, Yakushev P N , et al. Hyperbranched polyimides crosslinked with ethylene glycol diglycidyl ether: Glass transition dynamics and permeability. Polymer, 2006,47(19):6765-6772.
doi: 10.1016/j.polymer.2006.07.056
[18]   王宇, 高建峰, 胡拖平 , 等. 乙二醇双缩水甘油醚交联壳聚糖印迹材料对稀土中Cu(Ⅱ)的选择性吸附. 材料报道, 2016,30(2):29-32.
doi: 10.11896/j.issn.1005-023X.2016.04.008
[18]   Wang Y, Gao J F, Hu T P , et al. Selective adsorption properties ethylene glycol bis glycerol ether crosslinked chitosan imprinted material towards Cu(Ⅱ) in rare earth. Materials Review, 2016,30(2):29-32.
doi: 10.11896/j.issn.1005-023X.2016.04.008
[19]   Jozwiak T, Filipkowska U, Szymczyk P , et al. Effect of ionic and covalent crosslinking agents on properties of chitosan beads and sorption effectiveness of Reactive Black 5 dye. Reactive & Functional Polymers, 2017,114:58-74.
doi: 10.1016/j.reactfunctpolym.2017.03.007
[20]   徐宇红, 路秀玲, 郑春阳 , 等. 乙二醇二缩水甘油醚交联血红蛋白的反应优化. 高校化学工程学报, 2006,20(3):401-406.
[20]   Xu Y H, Lu X L, Zheng C Y , et al. Optimizing the reaction process of cross-linking ethyllene glycol diglycidyl ether with hemoglobin. Journal of Chemical Engineering of Chinese Universities, 2006,20(3):401-406.
[21]   张娅, 许涌深, 邱守季 , 等. 乙二醇二缩水甘油醚的合成及表征. 化学工业与工程, 2014,31(5):31-36.
doi: 10.13353/j.issn.1004.9533.2014.05.006
[21]   Zhang Y, Xu Y S, Qiu S J , et al. Preparation and characterization of glycol diglycidyl etheri. Chenmical Industry and Engineering, 2014,31(5):31-36.
doi: 10.13353/j.issn.1004.9533.2014.05.006
[22]   Torres D I, Miranda M V , Dall’ Orto V C. One-pot preparation of SBP-PANI-PAA-ethylene glyco diglycidyl ether sensor for electrochemical detection of H2O2. Sensors and Actuators B-Chemical, 2017,239:1016-1025.
doi: 10.1016/j.snb.2016.08.110
[23]   Csiffary G, Futo P, Adanyi N , et al. Ascorbate oxidase-based amperometric biosensor for L-ascorbic acid determination in beverages. Food Technology and Biotechnology, 2016,54(1):31-35.
doi: 10.17113/ftb.54.01.16.4135 pmid: 5105626
[24]   侯爱军, 徐冰斌, 梁亮 , 等. 改进铜皂-分光光度法测定脂肪酶活力. 皮革科学与工程, 2011,21(1):22-27.
doi: 10.3969/j.issn.1004-7964.2011.01.005
[24]   Hou A J, Xu B B, Liang L , et al. A modified colorimetric assay of lipase activity using emulsified olive oil as the substrate. Leather Science and Engineering, 2011,21(1):22-27.
doi: 10.3969/j.issn.1004-7964.2011.01.005
[25]   高阳, 谭天伟, 聂开立 , 等. 大孔树脂固定化脂肪酶及在微水相中催化合成生物柴油的研究. 生物工程学报, 2006,22(1):114-118.
doi: 10.3321/j.issn:1000-3061.2006.01.018
[25]   Gao Y, Tan T W, Nie K L , et al. Immobilization of lipase on macroporous resin and its application in synthesis of biodiesel in low aqueous media. Chinese Journal of Biotechnology, 2006,22(1):114-118.
doi: 10.3321/j.issn:1000-3061.2006.01.018
[26]   虞凤慧, 马韵升, 刘圣鹏 , 等. 海藻酸钠与羧甲基纤维素钠固定化高温碱性脂肪酶. 中国酿造, 2015,34(5):78-81.
doi: 10.11882/j.issn.0254-5071.2015.05.018
[26]   Yu F H, Ma Y S, Liu S P , et al. Immobilization of high-temperature alkaline lipase by sodium alginate and carboxymethyl cellulose sodium. China Brewing, 2015,34(5):78-81.
doi: 10.11882/j.issn.0254-5071.2015.05.018
[27]   郑璐, 雷明科, 张瑞 , 等. 海藻酸钠固定化α-淀粉酶的研究. 湖北农业科学, 2013,52(23):5845-5849.
doi: 10.7666/d.Y2394729
[27]   Zheng L, Lei M K, Zhang R , et al. Studies on immobilizing α-amylase sodium alginate. Hubei Agricultural Science, 2013,52(23):5845-5849.
doi: 10.7666/d.Y2394729
[1] YUAN Xiao-jing,YIN Hai-meng,FAN Xiao-wei,HE Jun-lin,HAO Shi-lei,JI Jin-gou. Preparation and Wound Repair of Keratin/Sodium Alginate/Polyacrylamide Hydrogel Skin Dressing[J]. China Biotechnology, 2021, 41(8): 17-24.
[2] YANG Yun-song,LIANG Jin-hua,YANG Xiao-rui,MA Yi-ming,JIN Shuang,SUN Yao-yao,ZHU Jian-liang. Research Progress in Oxidative Desulfurization of Diesel Oil Catalyzed by Enzymes[J]. China Biotechnology, 2021, 41(10): 109-115.
[3] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[4] DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate[J]. China Biotechnology, 2020, 40(4): 49-58.
[5] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[6] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[7] Feng-qin GONG,Qi-shun LIU,Hai-dong TAN,hua JIN,Cheng-yu TAN,Heng YIN. Immobilization of 5-Hydroxymethylfurfural Oxidase within MOFs for Catalysis[J]. China Biotechnology, 2019, 39(6): 41-47.
[8] LI Li-juan, MA Gui-ping, ZHAO Lin-guo. Research Progress of Immobilized Enzyme Carriers[J]. China Biotechnology, 2015, 35(11): 105-113.
[9] HUANG Zhe Tao ZHANG Zhang-lin LIN. Immobilization of β-glucosidase with nano SiO2 and its application in soybean isoflavone hydrolysis in two-phase-system[J]. China Biotechnology, 2008, 28(6): 71-76.
[10] . Cross-linked Enzyme Aggregates and advances[J]. China Biotechnology, 2006, 26(0): 0-0.