Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (12): 40-48    DOI: 10.13523/j.cb.20171207
Orginal Article     
The Regulation on Polyols Production by Trichosporonoides oedocephalis with HOG1 Inhibitors and Its Mechanism
Li-na GU1,Liang-zhi LI1,2(),Wei-qiang GUO1,Jing-sheng GU1,Xue-mei YAO1,Xin JU1
1 School of Chemistry, Biology, and Materials Engineering, Suzhou University of Science and Technology,Suzhou 215009, China
2 Department of Biological Sciences, National University of Singapore, Singapore 117543
Download: HTML   PDF(918KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract   Objective:

To regulate the production of polyols by Trichosporonoides oedocephalis employing HOG1 inhibitors.

Methods:

SB239063, SB202190 and SB203580 were added into the medium to conduct fermentation experiments, and the influence of three inhibitors on the fermentation was compared.

Results:

The experimental results showed SB239063 would decrease the ctGPD enzyme activity of Trichosporonoides oedocephalis, and enhance erythritol reductase(ER)enzyme activity at the same time.Furthermore, the Western blot analysis of HOG1 and phospho-HOG1demonstrated that SB239063 also inhibited the dephosphorylation of HOG1. After 120 h fermentation, the addition of 10μmol/L SB239063 decreased glycerol production by 20.57% and increased erythritol production by 31.16%.In other words, the conversion rate of glucose was increased by 24.73%.

Conclusion:

SB239063 weakened the ability to produce glycerol of Trichosporonoides oedocephalis and therefore promoted erythritol yield.



Key wordsTrichosporonoides oedocephalis      HOG1 inhibitors      Erythritol      Erythritol reductase     
Received: 29 May 2017      Published: 16 December 2017
ZTFLH:  Q789  
Cite this article:

Li-na GU,Liang-zhi LI,Wei-qiang GUO,Jing-sheng GU,Xue-mei YAO,Xin JU. The Regulation on Polyols Production by Trichosporonoides oedocephalis with HOG1 Inhibitors and Its Mechanism. China Biotechnology, 2017, 37(12): 40-48.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20171207     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I12/40

Fig.1 The effect of HOG1 inhibitors on the fermentation of T. oedocephalis
(a)Production of glycerol and erythritol (b) Cell dry weight (c) Residual glucose (d) Cell viability
Fig.2 The fermentation curve with HOG1 inhibitors against time
(a) Production of glycerol (b) Production of erythritol (c) Cell dry weight (d) Residual glucose
Fig.3 The formation of non-proliferating cells halos around the filter discs because of the addition of HOG1 inhibitors
(a) 10mmol/L inhibitors (b) 50mmol/L SB203580
Time (h) control SB202190 SB203580 SB239063
24 100 99 ± 2 96 ± 3 90 ± 1
48 100 92 ± 1 94 ±2 96 ± 3
72 100 96 ± 2 87 ± 1 80 ± 1
96 100 95 ± 1 86 ± 1 81 ± 1
120 100 94 ± 1 92 ± 2 87 ± 2
Table 1 Determination of cell viability of T.oedocephalis with MTT assay
Fig.4 The Western blot analysis of HOG1 and Phospho-HOG1
发酵时间(h) Specificactivity of ctGPD(mU/mg protein)
control SB202190 SB203580 SB239063
24 18.67 ± 0.29 18.37 ± 0.32 11.55 ± 0.25 15.03 ± 0.31
48 17.58 ± 0.26 17.33 ± 0.17 7.79 ± 0.09 14.23 ± 0.28
72 6.99 ± 0.18 6.64 ± 0.36 5.85 ± 0.12 6.12 ± 0.13
96 4.28 ± 0.16 4.18 ± 0.24 5.43 ± 0.11 4.05 ± 0.08
120 3.26 ± 0.13 3.23 ± 0.19 3.47 ± 0.08 3.17 ± 0.07
Table 2 The effect of HOG1 inhibitors on the specific activity of ctGPD
发酵时间(h) Specificactivity of ER(mU/mg protein)
control SB202190 SB203580 SB239063
24 327.59 ± 10.23 240.33 ± 7.39 251.57 ± 10.31 278.03 ± 11.21
48 227.63 ± 8.76 180.77 ± 6.29 167.83 ± 2.78 196.58 ± 9.73
72 126.52 ± 7.82 127.79 ± 6.34 129.26 ± 2.81 168.53 ± 5.27
96 104.49 ± 5.43 108.12 ± 5.76 110.41 ± 1.98 136.32 ± 4.19
120 87.34 ± 3.86 78.93 ± 3.21 80.13 ± 1.76 92.73 ± 2.17
Table 3 The effect of HOG1 inhibitors on the specific activity of ER
[1]   Jovanovi B, Mach R L, Machaigner A R . Erythritol production on wheat straw using Trichoderma reesei. AMB Express, 2014,4(1):1-12.
doi: 10.1186/2191-0855-4-1 pmid: 3901786
[2]   Hashino E, Kuboniwa M, Alghamdi S A , et al. Erythritol alters microstructure and metabolomic profiles of biofilm composed of Streptococcus gordonii and Porphyromonas gingivalis. Molecular Oral Microbiology, 2013,28(6):435-451.
doi: 10.1111/omi.12037 pmid: 23890177
[3]   肖素荣, 李京东 . 赤藓糖醇的特性及应用. 中国食物与营养, 2008,5:26-28.
doi: 10.3969/j.issn.1006-9577.2008.05.008
[3]   Xiao S R, Li J D . Erythritol characteristics and its application. Food and Nutrition in China, 2008,5:26-28.
doi: 10.3969/j.issn.1006-9577.2008.05.008
[4]   张佳丽, 姚军 . 赤藓糖醇在龋病预防中的应用. 医学综述, 2010,16(4):570-571.
doi: 10.3969/j.issn.1006-2084.2010.04.031
[4]   Zhang J L, Yao J . The research of erythritol in preventing caries . Medical Recapitulate. 2010,16(4):570-571.
doi: 10.3969/j.issn.1006-2084.2010.04.031
[5]   Mirończuk A M, Biegalska A, Dobrowolski A . Functional overexpression of genes involved in erythritol synthesis in the yeast Yarrowia lipolytica. Biotechnology for Biofuels, 2017,10:77.
doi: 10.1186/s13068-017-0772-6 pmid: 5366165
[6]   Deng H H, Han Y, Liu Y Y , et al. Identification of a newly isolated erythritol-producing yeast and cloning of its erythrose reductase genes. Journal of Industrial Microbiology & Biotechnology, 2012,39(11):1663-1672.
doi: 10.1007/s10295-012-1162-5 pmid: 22743789
[7]   Kobayashi Y, Yoshida J, Iwata H , et al. Gene expression and function involved in polyol biosynthesis of Trichosporonoides megachiliensis under hyper-osmotic stress. Journal of Bioscience and Bioengineering, 2012,115(6):645-650.
[8]   吴雪昌, 胡森杰, 钱凯先 . 酵母HOG-MAPK途径. 中国细胞生物学学报, 2005,27(3):247-252.
[8]   Wu X C, Hu S J, Qian K X . HOG-MAPK pathway in yeast. Chinese Journal of Cell Biology, 2005,27(3):247-252.
[9]   阮海华, 李西川, 兰蓓 , 等. 高渗透压甘油信号转导途径. 细胞生物学杂志, 2006,28(5):651-655.
[9]   Ruan H H, Li X C, Lan B , et al. High osmolarity glycerol MAP kinase signal transduction pathway. Chinese Journal of Cell Biology, 2006,28(5):651-655.
[10]   Kayingo G, Wong B W . The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and d-arabitol in Candida albicans. Microbiology, 2005,151(9):2987-2999.
doi: 10.1099/mic.0.28040-0 pmid: 16151209
[11]   Dinér P, Vilg J V, Kjellén J , et al. Design, synthesis, and characterization of a highly effective Hog1inhibitor: a powerful tool for analyzing MAP kinase signaling in yeast. PLoS One, 2011,6(5):e20012.
doi: 10.1371/journal.pone.0020012
[12]   Li L Z, Zhang H X, Fu J L , et al. Enhancement of ribitol production during fermentation of Trichosporonoides oedocephalis ATCC 16958 by optimizing the medium and altering agitation strategies. Biotechnology and Bioprocess Engineering, 2012,17(2):236-241.
doi: 10.1007/s12257-011-0359-1
[13]   Li L Z, Yang T Y, Hu C Y , et al. Transformation of the yeast Trichosporonoides oedocephalis. Antonie van Leeuwenhoek Journal of Microbiology, 2016,109(2):305-309.
doi: 10.1007/s10482-015-0633-x pmid: 26671413
[14]   Li L Z, Yang T Y, Guo W Q , et al. Construction of an efficient mutant strain of Trichosporonoides oedocephalis with HOG1 gene deletion for production of erythritol. Journal of Microbiology & Biotechnology, 2016,26(4):700-709.
[15]   Bownik A . In vitro effects of staphylococcal leukocidin LukE/LukD on the proliferative ability of lymphocytes isolated from common carp (Cyprinus carpio L.). Fish & Shellfish Immunology, 2006,20(4):656-659.
doi: 10.1016/j.fsi.2005.07.002 pmid: 16183304
[16]   Penttinen P, Pelkonen J, Huttunen K , et al. Interactions between Streptomyces californicus and Stachybotrys chartarum can induce apoptosis and cell cycle arrest in mouse RAW264.7 macrophages. Toxicology & Applied Pharmacology, 2005,202(3):278-288.
doi: 10.1016/j.taap.2004.07.002
[17]   Sanchez N S, Konigsberg M . Using yeast to easily determine mitochondrial functionality with 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide (MTT) assay. Biochemistry and Molecular Biology Education, 2006,34(3):209-212.
doi: 10.1002/bmb.2006.49403403209 pmid: 21638676
[18]   Ryu Y H, Kim Y H, Lee J Y , et al. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma. PLoS One, 2013,8(6):e66231.
doi: 10.1371/journal.pone.0066231 pmid: 23799081
[19]   王正祥, 诸葛健 . 产甘油假丝酵母甘油代谢关键酶的研究. 微生物学报, 2000,40(2):180-187.
[19]   Wang Z X, Zhuge J . The key enzymes of metabolisms of glycerol in Candida glycerolgenesis. Acta Microbiologica Sinica, 2000,40(2):180-187.
[20]   Ookura T, Azuma K, Isshiki K , et al. Primary structure analysis and functional expression of erythrose reductases from erythritol-producing fungi (Trichosporonoides megachiliensis SNG-42). Bioscience, Biotechnology, and Biochemistry, 2005,69(5):944-951.
[21]   O’Rourke S M, Herskowitz I, O’Shea E K , et al. Yeast go the whole HOG for the hyperosmotic response. Trends in Genetics, 2002,18(8):405-412.
doi: 10.1016/S0168-9525(02)02723-3 pmid: 12142009
[22]   Macia J, Regot S, Peeters T , et al. Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction. Science Signaling, 2009, 2(63): ra13.
doi: 10.1126/scisignal.2000056 pmid: 19318625
[23]   Westfall P J, Thorner J . Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: Use of an analog-sensitive HOG1 allele. Eukaryotic Cell, 2006,5(8):1215-1228.
doi: 10.1128/EC.00037-06 pmid: 1539154
[24]   陈献忠, 王正祥, 诸葛健 . 酵母细胞甘油代谢与生理功能研究进展. 中国生物工程杂志, 2010,30(5) : 140-148.
[24]   Chen X Z, Wang Z X, Zhuge J . Progress in glycerol metabolism and its physiological function in yeast cells. China Biotechnology, 2010,30(5) : 140-148.
[25]   Remize F, Barnavon L, Dequin S . Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae. Metabolic Engineering, 2001,3(4):301-312.
doi: 10.1006/mben.2001.0197 pmid: 11676566
[26]   Moon H J, Jeya M, Kim I W , et al. Biotechnological production of erythritol and its applications. Applied Microbiology and Biotechnology, 2010,86(4):1017-1025.
doi: 10.1007/s00253-010-2496-4 pmid: 20186409
[27]   Sawada K, Taki A, Yamakawa T , et al. Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42. Journal of Bioscience and Bioengineering , 2009,108(5) : 385-390.
doi: 10.1016/j.jbiosc.2009.05.008 pmid: 19804861
[28]   Sánchez-Fresneda R Guirao-Abad J P, Argüelles A , et al. Specific stress-induced storage of trehalose, glycerol and d-arabitol in response to oxidative and osmotic stress in Candida albicans. Biochemicaland Biophysical Research Communications, 2013,430(4):1334-1339.
doi: 10.1016/j.bbrc.2012.10.118 pmid: 23261427
[1] LIU Peng, WANG Ze-nan, ZHANG Shi-fa, LI Ying. Optimization of Erythritol Production by Moniliella acetoabutans Using Response Surface Methodology[J]. China Biotechnology, 2011, 31(5): 69-74.
[2] . Optimization of erythritol production by Moniliella acetoabutans using response surface methodology[J]. China Biotechnology, 2011, 31(05): 0-0.