Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (12): 27-33    DOI: 10.13523/j.cb.20171206
Orginal Article     
Heterologous Expression of CiRS Gene Eenhances the Antioxidant Capacity of Arabidopsis by Increasing the Content of Resveratrol
Fei-yun YANG1,2,Yan-yan WU2,Shuang CUI1,Xiu-juan ZHANG3,Rui-gang WANG1,Guo-jing LI1()
1 College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
2 College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
3 Inner Mongolia Autonomous Region Biotechnology Research Institute, Hohhot 010070, China
Download: HTML   PDF(823KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Resveratrol is a member of stilbenoids with disease resistant activity for plants and exhibits a wide range of important biological and pharmacological properties for human which has received extensive attention in the fields of agriculture, medicine, foods, cosmetics and so on. Resveratrol synthase (RS) is an exclusive necessary enzyme in the pathway of resveratrol biosynthesis which determines the synthesis of resveratrol in plants. CiRS, a RS gene isolated from Caragana intermedia, was transferred into Arabidopsis. Total flavonoids experimental results showed that the total flavonoids content of wild type was significantly higher than that of the transgenic lines. HPLC method was used to analyze the resveratrol content in transgenic plants which maximum content was 335μg/g FW. Accumulation of malondialdehyde (MDA) after UV treatment in transgenic plants was significantly less than the wild type. DPPH free radical scavenging ability of transgenic plants extraction was higher than the wild type. Taken together, these results indicated that the antioxidant activity of transgenic plants was enhanced with the expression of CiRS gene which synthesise resveratrol with flavonoid substrates.



Key wordsResveratrol synthase      Caragana intermedia      Resveratrol      Transgenic      Arabidopsis     
Received: 24 August 2017      Published: 16 December 2017
ZTFLH:  Q786  
Cite this article:

Fei-yun YANG,Yan-yan WU,Shuang CUI,Xiu-juan ZHANG,Rui-gang WANG,Guo-jing LI. Heterologous Expression of CiRS Gene Eenhances the Antioxidant Capacity of Arabidopsis by Increasing the Content of Resveratrol. China Biotechnology, 2017, 37(12): 27-33.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20171206     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I12/27

Fig.1 The pCanG-CiRS recombinant vector
Fig.2 Expression analysis of CiRS in transgenic Arabidopsis
Fig. 3 The content of total flavonoids in different Arabidopsis lines
(a) The standard curve of rutin (b) The content of total flavonoids in different Arabidopsis lines ** indicates significant difference among samples at 0.01 level
Fig.4 The resveratrol chromatogram map of different Arabidopsis lines
(a) Standard sample (b) The resveratrol chromatogram map of different Arabidopsis lines black line: WT; green line: OE-1; red line: OE-16; blue line: OE-17
株系名 WT OE-1 OE-16 OE-17
含量(μg/g FW) 未检出 329 313 335
Table 1 The resveratrolcontent of different Arabidopsis lines
Fig.5 The content of MDA in different Arabidopsis lines
* Indicates significant difference among samples at 0.05 level; ** Indicates significant difference among samples at 0.01 level
Fig. 6 The scavenging rate of DPPH radical of different Arabidopsis lines
(a) The standard curve of DPPH (b) The scavenging rate of DPPH radical of different Arabidopsis lines ** Indicates significant difference among samples at 0.01 level
Fig.7 Trolox standard curve for scavenging rate of DPPH radical
[1]   Delaunois B, Cordelier S, Conreux A , et al. Molecular engineering of resveratrol in plants. Plant Biotechnology Journal, 2009,7(1):2-12.
doi: 10.1111/j.1467-7652.2008.00377.x pmid: 19021877
[2]   Huang H, Lu J, Hunter W . Comparative analysis of stilbene synthase genes among Vitis Species. Acta Horticulturae, 2007, ( 738):755-758.
doi: 10.17660/ActaHortic.2007.738.100
[3]   Pan Q H, Wang L, Li J M . Amounts and subcellular localization of stilbene synthase in response of grape berries to UV irradiation. Plant Science, 2009,176(3):360-366.
doi: 10.1016/j.plantsci.2008.12.004
[4]   Yu C K, Lam C N, Springob K . Constitutive accumulation of cis-piceid in transgenic Arabidopsis overexpressing a sorghum stilbene synthase gene. Plant Cell Physiology, 2006,47(7):1017-1021.
doi: 10.1093/pcp/pcj061
[5]   Lu Y, Shao D Y, Shi J L , et al. Strategies for enhancing resveratrol production and the expression of pathway enzymes. Applied Microbiology and Biotechnology, 2016,100(17):7407-7421.
doi: 10.1007/s00253-016-7723-1 pmid: 27405437
[6]   Chong J L, Poutaraud A, Hugueney P . Metabolism and roles of stilbenes in plants. Plant Science, 2009,177(3):143-155.
doi: 10.1016/j.plantsci.2009.05.012
[7]   Raiber S, Schr?der G, Schr?der J . Molecular and enzymatic characterization of two stilbene synthases from Eastern white pine(Pinus strobus). FEBS Letters, 1995,361(2):299-302.
doi: 10.1016/0014-5793(95)00199-J
[8]   Yu C K, Springob K, Schmidt J , et al. A stilbene synthase gene (SbSTS1) is involved in host and nonhost defense responses in sorghum. Plant Physiology, 2005,138(1):393-401.
doi: 10.1104/pp.105.059337 pmid: 15821144
[9]   Hain R, Bieseler B, Kindl H , et al. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Molecular Biology, 1990,15(2):325-335.
doi: 10.1007/BF00036918 pmid: 2103451
[10]   Hain R, Reif H J, Krause E , et al. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature, 1993,361(6408):153-156.
doi: 10.1038/361153a0
[11]   Liu Z Y, Zhuang C X, Sheng S J , et al. Overexpression of a resveratrol synthase gene (PcRS) from Polygonum cuspidatum in transgenic Arabidopsis causes the accumulation of trans-piceid with antifungal activity. Plant Cell Reports, 2011,30(11):2027-2036.
doi: 10.1007/s00299-011-1110-2 pmid: 21717185
[12]   Zheng X, Shi J, Yu Y , et al. Exploration of elite stilbene synthase alleles for resveratrol concentration in wild Chinese Vitis spp. and Vitis cultivars. Frontiers in Plant Science, 2017,8(130):1-12.
doi: 10.3389/fpls.2017.00487 pmid: 5383651
[13]   Yang Q, Yin J J, Li G , et al. Reference gene selection for qRT-PCR in Caragana korshinskii Kom. under different stress conditions. Molecular Biology Reports, 2014,41(4):2325-2334.
doi: 10.1007/s11033-014-3086-9 pmid: 24452712
[14]   Xiao S C, Xiao H L, Peng X M , et al. Dendroecological assessment of Korshinsk peashrub ( Caragana korshinskii Kom.) from the perspective of interactions among growth, climate, and topography in the western Loess Plateau, China. Dendrochronologia, 2015,33(1):61-68.
doi: 10.1016/j.dendro.2015.01.001
[15]   Clough S J, Bent A F . Floral dip: a simplified method for Agrobacterium - mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998,16(6) : 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[16]   Chukwumah Y, Walker L T, Verghese M . Peanut skin color: abiomarker for total polyphenolic content and antioxidative capacities of peanut cultivars. International Journal of Molecular Sciences, 2009,10(11):4941-4952.
doi: 10.3390/ijms10114941 pmid: 2808014
[17]   Thaiponga K, Boonprakob U, Crosby K , et al. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 2006,19(7):669-675.
doi: 10.1016/j.jfca.2006.01.003
[18]   WangW, TangK, YangHR, et al. Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiology & Biochemistry, 2010,48(2-3):142-152.
doi: 10.1016/j.plaphy.2009.12.002 pmid: 20060310
[19]   Rimando A M, Pan Z Q, Polashock J J , et al. In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression. Plant Biotechnology Journal, 2012,10(3):269-283.
doi: 10.1111/j.1467-7652.2011.00657.x pmid: 21902799
[20]   Fischer R, Budde I, Hain R . Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. The Plant Journal, 1997,11(3):489-498.
doi: 10.1046/j.1365-313X.1997.11030489.x
[21]   Kiselev K V, Aleynova OA . Influence of overexpression of stilbene synthase VaSTS7 gene on resveratrol production in transgenic cell cultures of grape Vitis amurensis Rupr. Applied Biochemistry and Microbiology, 2016,52(1):68-73.
doi: 10.1134/S0003683815060071
[22]   Fan C H, Pu N, Wang X P , et al. Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tissue Organ Culture, 2008,92(2):197-206.
doi: 10.1007/s11240-007-9324-2
[23]   Tang K, Zhan J C, Yang H R , et al. Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings. Journal of Plant Physiology, 2010,167(2):95-102.
doi: 10.1016/j.jplph.2009.07.011 pmid: 19716623
[24]   Pareek A, Sopory S K, Bohnert H J , et al. Abiotic Stress Adaptation in Plants. Berlin: Springer Press, 2010. 91-102.
[1] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[2] LIANG Zhen-xin,LIU Fang,ZHANG wei,LIU Qing-you,LI Li. The Preparation and Validation of p185 erb B2 Human-mouse Chimeric Antibody ChAb26 Transgenic Mice Mammary Gl and Bioreactor[J]. China Biotechnology, 2019, 39(8): 40-51.
[3] WANG You-hua,ZOU Wan-nong,LIU Xiao-qing,WANG Zhaohua,SUN Guo-qing. Global Patent Analysis and Technology Prospect of Genetically Modified Maize[J]. China Biotechnology, 2019, 39(12): 83-94.
[4] YANG Fei-yun,YANG Tian-rui,LIU Kun,CUI Shuang,WANG Rui-gang,LI Guo-jing. Flavonoids Metabolism and Antimicrobial Activity of Arabidopsis Heterologous Expressing CiRS Gene[J]. China Biotechnology, 2019, 39(11): 22-30.
[5] CHEN Xiu-xiu,WU Cheng-lin,ZHOU Li-jun. Research Progress in Preparation and Clinical Application of Therapeutic Human Antibodies[J]. China Biotechnology, 2019, 39(10): 90-96.
[6] Ming-ming HAN,Yu-ping LUO. Establishment and Identification of Endogenous CD133 + Cell Tracer Mouse Model[J]. China Biotechnology, 2018, 38(6): 58-62.
[7] Min YAO,Shu-hua ZHU,Fo-sheng LI,Shi-yan ZHANG,Lin TANG. Analysis of Salt Tolerance and Insect Resistance of Transgenic Tobacco Expressing AtCYSa from Arabidopsis[J]. China Biotechnology, 2018, 38(4): 8-16.
[8] Wen-juan CHAI,Qi YANG,Guo-jing LI,Rui-gang WANG. CiMYB15 from Caragana Intermedia Positively Regulates Flavonoids Metabolism of Arabidopsis[J]. China Biotechnology, 2018, 38(10): 8-19.
[9] GE Lin, LIU Xin-yu, WANG Guirong. Construction of Human SP-B Protein Transgenic Mice and Bacterial Pneumonia Model[J]. China Biotechnology, 2017, 37(10): 65-71.
[10] ZUO Zhi-yu, XIN Ling-biao, YANG Jie, WANG Xin-ting. Construction of SND1 Transgenic Mice[J]. China Biotechnology, 2016, 36(4): 97-103.
[11] WANG Xu-jing, ZHANG Xin, LIU Pei-lei, WANG Zhi-xing. The Application and Safety Assessment of Stacked Transgenic Plant[J]. China Biotechnology, 2016, 36(4): 18-23.
[12] MA Cai-yun, PANG Jin-hui, SHI Xiao-hua, HU Rui-fa. Malatesta's Transgenic Research: Citation Analysis and Relevant Evidence[J]. China Biotechnology, 2016, 36(4): 12-17.
[13] LI Dong qiao, GUO Wen jiao, CHEN Fang. Research on Development Trend of Transgenic Medicinal Plant Technology Based on Patent Analysis[J]. China Biotechnology, 2016, 36(11): 98-108.
[14] YU Xiu-min, YUE Wen-ran, ZHANG Yan-na, YANG Fei-yun, WANG Rui-gang, LI Guo-jing, YANG Qi. Heterologous of CkLEA1 Gene Enhanced Tolerance to Abiotic Stress in Arabidopsis[J]. China Biotechnology, 2016, 36(10): 28-34.
[15] LI Hong-chang, YUAN Lin, ZHANG Ling-qiang . Construction of Transgenic Mice and Phenotypic Analysis of Tumor Suppressor PTEN[J]. China Biotechnology, 2015, 35(8): 1-8.