Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (12): 34-39    DOI: 10.13523/j.cb.20171205
Orginal Article     
Effect of Prolines in the Loop of CPC Acylase Substrate Binding Region on Its Catalytic Properties
Cun-duo TANG1,2*,Hong-ling SHI1*,Zhu-jin JIAO1,Fei LIU1,Jian-he XU2**(),Yun-chao KAN1**(),Lun-guang YAO1**()
1 Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang 473061, China
2 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
Download: HTML   PDF(650KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cold-active CPC acylase plays an important role and has significant advantage in the biosynthesis of 7-ACA, thus developing cold-active CPC acylase has significant economic value. In order to obtain the CPC acylase with higher catalytic activity at low temperature, on the basis of previous research, the previously obtained CA IIIM was taken as a parent, confirmed its substrate binding region by the method of molecular docking, and found the key proline residues in the loop of CPC acylase substrate binding region by pyMOL. After analyzing, the selected prolines were mutated into glycines, respectively. The study of soluble expression was carried out in E. coli BL21(DE3) with pET32a plasmid, and soluble expression was achieved in the other mutants except P272G. Catalytic activity of P238G, P582G and P679G to CPC was 1.25, 1.04 and 1.38 U/mg respectively at 13℃, and there was a significant improvement compared with parental 0.85 U/mg. Moreover, the stability of parent and mutants was investigated, and there was no obvious difference between them. Afterwards, the low temperature biosynthesis of 7-ACA was carried out at 13℃, and the results showed that the conversion rate of CPC can reach 80% and above after 24h . The ideal results in cold adaptation improvement of CPC acylase were gained. So a solid foundation for further transformation and application was established, it provided a useful experience for the creating of other low-temperature enzymes.



Key wordsCPC acylase      Cold adaptation      Molecular modification      Rational design      Activity assay     
Received: 25 May 2017      Published: 16 December 2017
ZTFLH:  Q819  
Cite this article:

Cun-duo TANG,Hong-ling SHI,Zhu-jin JIAO,Fei LIU,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Effect of Prolines in the Loop of CPC Acylase Substrate Binding Region on Its Catalytic Properties. China Biotechnology, 2017, 37(12): 34-39.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20171205     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I12/34

Fig.1 The molecule-docked conformation between 3-D structures of a CPC and CAⅢM
NameRemarkPrimer sequence (5'~3')
pET28-2254-Runiversal primerGCCTTACTGGTTAGCAGAATG
P238G-FPro238TCCTGGCGGGTGACGGCCACCGTGTTTTCG
P272G-FPro272GGTGTTCCGGGTTTCGGCCACTTCGCGCACAAC
P582G-FPro582TCGCGGCGGTTCCGGGCGGTGTTTCTCCGCAG
P679G-FPro679GTTCCGTCTGCGGGTGGCGAAGCGACCTACGG
Table 1 Sequences of the primers used for site-directed mutagenesis of CA IIIM-encoding gene
Fig.2 The SDS-PAGE analysis for the expressed products of recombinant E. coli
M: PageRuler Prestained Protein Ladder; 1: Expressed products of BL21/pET32a; 2: Expressed products of BL21/pET32a-caIIIP238G; 3: Expressed products of BL21/pET32a-caIIIP272G; 4: Expressed products of BL21/pET32a-caIIIP582G; 5: Expressed products of BL21/pET32a-caIIIP679G
Fig.3 The SDS-PAGE analysis for the purified recombinant cephalosporin C acylases
M: PageRuler Prestained Protein Ladder; 1: Purified reCAIIIP238G; 2: Purified reCAIIIP582G; 3: Purified reCAIIIP679G
NameResidul activity after incubation for 24 hours(%)
-80℃13℃25℃
Parent999892
reCAIIIP238G979590
reCAIIIP582G989086
reCAIIIP679G989285
Table 2 Temperature stability of the parent and mutants
Fig.4 The conversion rate of CPC at low temperature
[1]   Tramper J, Beeftink H H, Janssen A E, et al.Biocatalytic production of semi-synthetic cephalosporins: process technology and integration. In: Synthesis of β-Lactam Antibiotics. Bruggink A ed. Dordrecht:Springer, 2001. 206-249.
[2]   马晨露, 唐存多, 史红玲,等. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成. 中国生物工程杂志, 2015,35(12):65-71.
doi: 10.13523/j.cb.20151210
[2]   Ma C L, Tang C D, Shi H L, et al.Semi rational modification of cephalosporin C acylase and biosynthesis of 7-ACA. China Biotechnology, 2015,35(12):65-71.
doi: 10.13523/j.cb.20151210
[3]   薛亮. 头孢类抗生素及中间体发展浅析. 精细化工原料及中间体, 2007(03):27-29.
[3]   Xue L.Development analysis of cephalosporins and its intermediate. Fine Chemical Industrial Raw Materials and Intermediates, 2007(03):27-29.
[4]   Sonawane V C.Enzymatic Modifications of Cephalosporins by Cephalosporin Acylase and Other Enzymes. Crit Rev Biotechnol, 2006, 26(2):95-120.
doi: 10.1080/07388550600718630 pmid: 16809100
[5]   Pollegioni L, Rosini E, Molla G.Cephalosporin C acylase: dream and(/or) reality. Appl Microbiol Biotechnol, 2013, 97(6):2341-2355.
doi: 10.1007/s00253-013-4741-0 pmid: 23417342
[6]   Pollegioni L, Molla G, Sacchi S, et al.Properties and applications of microbial D-amino acid oxidases: current state and perspectives. Appl Microbiol Biotechnol, 2008, 78(1):1-16.
doi: 10.1007/s00253-007-1282-4 pmid: 18084756
[7]   姚舜, 罗晖, 常雁红等. 一步酶法生产 7-氨基头孢烷酸的研究进展. 现代化工, 2013, 33(2):11-14.
doi: 10.3321/j.issn:0253-4320.2002.12.005
[7]   Yao S, Luo H, Chang Y H, et al.Research progress in one-step enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid. Modern Chemical Industry, 2013, 33(2): 11-14.
doi: 10.3321/j.issn:0253-4320.2002.12.005
[8]   Wang Y, Yu H, Song W, et al.Overexpression of synthesized cephalosporin C acylase containing mutations in the substrate transport tunnel. J Biosci Bioeng, 2012, 113(1):36-41.
doi: 10.1016/j.jbiosc.2011.08.027 pmid: 21968249
[9]   Zhu X, Luo H, Chang Y, et al.Characteristic of immobilized cephalosporin C acylase and its application in one-step enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid. World J Microb Biotechnol, 2011, 27(4):823-829.
doi: 10.1007/s11274-010-0523-3
[10]   柳杏辉. 酶法制备新型医药中间体D-7-ACA工艺研究. 西安: 西北大学, 2009.
doi: 10.7666/d.y1506921
[10]   Liu X H.Study on producing a new pharmaceutieal intermediate D-7-ACA with enzymatic technology. Xian: Northwest University, 2009.
doi: 10.7666/d.y1506921
[11]   YC S, JY J, KH J: Cephalosporin C acylase mutant and method for preparing 7-ACA using same. In., vol. 7592168. US; 2007.
[12]   曾胤新, 蔡明宏, 俞勇等. 微生物低温酶适冷机制研究进展. 中国生物工程杂志, 2003(10):52-56.
[12]   Zeng Y X, Cai M H, Yu Y, et al.Progress of molecular adaptation of cold enzymes from microorganisms. China Biotechnology, 2003(10):52-56.
[13]   Ramya L N, Pulicherla K K.Molecular insights into cold active polygalacturonase enzyme for its potential application in food processing. J Food Sci Technol, 2015, 52(9):5484-5496.
doi: 10.1007/s13197-014-1654-6 pmid: 26344963
[14]   Feller G, Gerday C.Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol, 2003, 1(3):200-208.
doi: 10.1038/nrmicro773 pmid: 15035024
[15]   Tang M A, Motoshima H, Watanabe K.Cold adaptation: structural and functional characterizations of psychrophilic and mesophilic acetate kinase. Protein J, 2014, 33(4):313-322.
doi: 10.1007/s10930-014-9562-1 pmid: 24801996
[16]   Sanchis J, Fernández L, Carballeira J D, et al.Improved PCR method for the creation of saturation mutagenesis libraries in directed evolution: application to difficult-to-amplify templates. Appl Microb Biotechnol, 2008, 81(2):387-397.
doi: 10.1007/s00253-008-1678-9 pmid: 18820909
[17]   Bradford M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72:248-254.
doi: 10.1016/0003-2697(76)90527-3
[18]   Laemmli U K.Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227:680-685.
doi: 10.1038/227680a0
[19]   徐雪丽, 张伟, 刘艳,等. 头孢菌素C酰化酶突变位点的研究. 中国生物工程杂志, 2015,35(2):59-65.
doi: 10.13523/j.cb.20150209
[19]   Xu X L, Zhang W, Liu Y, et al.Study on mutaions of cephalosporin C acylase. China Biotechnology, 2015,35(2): 59-65.
doi: 10.13523/j.cb.20150209
[20]   Li Y, Chen J, Jiang W, et al.In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130. European Journal of Biochemistry, 1999, 262(3):713-719.
doi: 10.1046/j.1432-1327.1999.00417.x pmid: 10411632
[1] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[2] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[3] SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis[J]. China Biotechnology, 2020, 40(3): 88-95.
[4] LI Bing-juan,LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei. Advances in Protein Engineering of the Old Yellow Enzyme OYE Family[J]. China Biotechnology, 2020, 40(3): 163-169.
[5] Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation[J]. China Biotechnology, 2019, 39(5): 96-104.
[6] Fang CHEN,Gang XU,Li-rong YANG,Jian-ping WU. Enhancing the Activity of LkTADH by Site-Directed Mutagenesis to Prepare Key Chiral Block of Statins[J]. China Biotechnology, 2018, 38(9): 59-64.
[7] LI Ji-bin, CHEN Zhi, CHEN Hua-you. Research Progress on Cloning, Expression,Immobilization and Molecular Modification of Nitrilase[J]. China Biotechnology, 2017, 37(9): 141-147.
[8] ZHANG Yu-fu, WANG Jian-wen, LI Song-tao, ZHU Zhang-liang, LU Fu-ping, MAO Shu-hong, QIN Hui-min. The Expression, Purification and Structural Analysis of Cholesterol Oxidase ChOG[J]. China Biotechnology, 2017, 37(6): 43-49.
[9] JI Jun, ZHU Chen-chen, XU Xin, LIU Xiau, LENG Chao-liang, SHI Hong-fei, YAO Lun-guang, KAN Yun-chao. Soluble Fusion-expression and Antitumor Activity Analysis of Apoptin of Chicken Anemia Virus[J]. China Biotechnology, 2017, 37(2): 26-32.
[10] GUO Chao, WANG Zhi-yan, GAN Yi-ru, LI Dan, DENG Yong, YU Hao-ran, HUANG He. Engineering Thermostability of Bovine Enterokinase by Rational Design Method[J]. China Biotechnology, 2016, 36(8): 46-54.
[11] WEN Sai, LIU Huai-ran, HAN Xu, LI Tian, XING Xuan. Research Advances in the Design of Synthetic Antimicrobial Peptides with Enhanced Therapeutic Potentials[J]. China Biotechnology, 2016, 36(8): 89-98.
[12] YU Xiao-dan, WU Xiu-xiu, YAO Dong-sheng, LIU Da-ling, XIE Chun-fang. Trypsin-resistant Improvement of Bacillus subtilis β-1,4-endoxylanase by Rational Design Based on Molecular Structure Evaluation[J]. China Biotechnology, 2016, 36(8): 80-88.
[13] XU Xue-li, ZHANG Wei, LIU Yan, XIE Li-ping, HU You-jia. Study on Mutations of Cephalosporin C Acylase[J]. China Biotechnology, 2015, 35(2): 59-65.
[14] MA Chen-lu, TANG Cun-duo, SHI Hong-ling, WANG Rui, YUE Chao, XIA Min, WU Min-chen, KAN Yun-chao. Semi-rational Modification of Cephalosporin C Acylase and Biosynthesis of 7-ACA[J]. China Biotechnology, 2015, 35(12): 65-71.
[15] TANG Cun-duo, SHI Hong-ling, TANG Qing-hai, JIAO Zhu-jing, KAN Yun-chao, WU Min-chen, LI Jian-fang. Recent Trends in Discovery and Protein Engineering of Biocatalysts[J]. China Biotechnology, 2014, 34(9): 113-121.