Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (12): 14-20    DOI: 10.13523/j.cb.20171203
Orginal Article     
The Interaction between Plasma Lipoprotein(a) and Recombinant Protein E Derived from Nontypeable Haemophilus influenza
Yu WANG1,4,Zhi LIU1,4,Wen-cheng BAI2,4,Li-ping XU3,Run-lin HAN2,4()
1 College of Life Science, Inner Mongolia Agriculture University, Hohhot 010018, China
2 College of Veterinary Medicine, Inner Mongolia Agriculture University, Hohhot 010018, China
3 College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010018, China
4 Research Center of Plasma Lipoprotein Immunology, Inner Mongolia Agriculture University, Hohhot 010018, China
Download: HTML   PDF(693KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Objective:

Protein E (PE), with two lysine residues at its C-terminus, is a plasminogen (Plg) receptor on the surface of nontypeable Haemophilus influenza (NTHi). NTHi can recruit Plg on the cell surface by PE and utilize host fibrinolytic system to achieve its immune invasion. Based on the high homology of Plg and Apolipoprotein(a) [Apo(a)] of Lipoprotein(a) [Lp(a)], Lp(a) was supposed to bind to PE.

Methods:

The recombinant PE (rPE) and C-terminal lysine residues-deleted variant (rPEΔKK) were obtained by prokaryotic expression and further purified. Lp(a) was isolated and purified from human plasma by KBr density gradient centrifugation followed by Q SepharoseTM Fast Flow ion exchange chromatography. The interaction between rPE and Lp(a) was investigated by enzyme-linked immunosorbent assay(ELISA) and Pull down followed by Western blot.

Results:

The results indicated that rPE could bind to Lp(a) but not to LDL, and the interaction was significantly inhibited by EACA. The binding capacity of rPEΔKK to Lp(a) was obviously lower than that of rPE. In addition, Lp(a) could inhibit the binding of rPE to Plg slightly.

Conclusion:

In overall, Lp(a) could bind to rPE and the C-terminal lysine residues of rPE and the lysine binding site(LBS) of Apo(a) was responsible for this interaction.



Key wordsNontypeable      Haemophilus influenza      Protein E      Lipoprotein(a)      Plasminogen      Lysine binding sites     
Received: 15 August 2017      Published: 16 December 2017
ZTFLH:  R378.4  
Cite this article:

Yu WANG,Zhi LIU,Wen-cheng BAI,Li-ping XU,Run-lin HAN. The Interaction between Plasma Lipoprotein(a) and Recombinant Protein E Derived from Nontypeable Haemophilus influenza. China Biotechnology, 2017, 37(12): 14-20.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20171203     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I12/14

PrimerSequence (5'-3')Restrictive enzymes
rPEF: CGAGACCGCGGTCCCGAATTCAAGGCTAAACAAAATGATGTGAAGCEcoRⅠ
R: CCCCTGCAGGTCGACCTCGAGTTATTTTTTATCAACTGAAAATGCTTCXholⅠ
rPEΔKKF: CGAGACCGCGGTCCCGAATTCAAGGCTAAACAAAATGATGTGAAGCEcoRⅠ
R: CCCCTGCAGGTCGACCTCGAGTTAATCAACTGAAAATGCTTCACCAXholⅠ
Table 1 List of primers
Fig.1 Purity of Lp(a) identified by SDS-PAGE and Western blot
M: Molecular mass markers (kDa)
Fig.2 Interaction of rPE, rPEΔKK with Lp(a) detected by ELISA
* P<0.05; ** P<0.01; *** P<0.001
Fig.3 Interaction of rPE, rPEΔKK with Lp(a) detected by Pull down followed with Western blot
M: Molecular mass markers (kDa)
Fig.4 Interaction of rPE with LDL detected by ELISA
Fig.5 The inhibition of EACA for the binding of rPE to Lp(a)
** P<0.01; *** P<0.001
Fig.6 Interaction of rPE, rPEΔKK with Plg detected by ELISA
* P<0.05; ** P<0.01; *** P<0.001
Fig.7 The inhibition of the binding of rPE to Plg by Lp(a)
* P<0.05
[1]   Duell B L, Su Y C, Riesbeck K.Host-pathogen interactions of nontypeable Haemophilus influenzae: from commensal to pathogen. Febs Letters, 2016, 590(21): 3840-3853.
doi: 10.1002/1873-3468.12351 pmid: 27508518
[2]   Bhattacharya S, Ploplis V A, Castellino F J.Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. Journal of Biomedicine and Biotechnology, 2012, 2012: 482096.
doi: 10.1155/2012/482096 pmid: 3477821
[3]   Lahteenmaki K, Kuusela P, Korhonen T K.Bacterial plasminogen activators and receptors. Fems Microbiology Reviews, 2001, 25(5): 531-552.
doi: 10.1111/j.1574-6976.2001.tb00590.x pmid: 11742690
[4]   Sun Z, Chen Y H, Wang P, et al.The blockage of the high-affinity lysine binding sites of plasminogen by EACA significantly inhibits prourokinase-induced plasminogen activation. Biochimica et Biophysica Acta, 2002, 1596(2): 182-192.
doi: 10.1016/S0167-4838(02)00233-9 pmid: 12007600
[5]   Sjostrom I, Grondahl H, Falk G, et al.Purification and characterisation of a plasminogen- binding protein from Haemophilus influenzae. Sequence determination reveals identity with aspartase. Biochimica Et Biophysica Acta, 1997, 1324(2): 182-190.
doi: 10.1016/S0005-2736(96)00218-0 pmid: 9092705
[6]   Barthel D, Singh B, Riesbeck K, et al.Haemophilus influenzae uses the surface protein E to acquire human plasminogen and to evade innate immunity. Journal of Immunology, 2012, 188(1): 379-385.
doi: 10.4049/jimmunol.1101927 pmid: 22124123
[7]   Su Y C, Jalalvand F, Morgelin M, et al.Haemophilus influenzae acquires vitronectin via the ubiquitous protein F to subvert host innate immunity. Molecular Microbiology, 2013, 87(6): 1245-1266.
doi: 10.1111/mmi.12164 pmid: 23387957
[8]   Su Y C, Mukherjee O, Singh B, et al.Haemophilus influenzae P4 interacts with extracellular matrix proteins promoting adhesion and serum resistance. Journal of Infectious Diseases, 2016, 213(2): 314-323.
doi: 10.1093/infdis/jiv374 pmid: 26153407
[9]   Hallstrom T, Blom A M, Zipfel P F, et al.Nontypeable Haemophilus influenzae protein E binds vitronectin and is important for serum resistance. Journal of Immunology, 2009, 183(4): 2593-2601.
doi: 10.4049/jimmunol.0803226 pmid: 19635912
[10]   Berg K. Lp(a) lipoprotein: an overview. Chemistry and Physics of Lipids, 1994, 67-68(1): 9-16.
[11]   Mclean J W, Tomlinson J E, Kuang W J, et al.cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature, 1987, 330(6144): 132-137.
doi: 10.1038/330132a0
[12]   Han R L. Plasma lipoproteins are important components of the immune system, 2010, 54(4): 246-253.
[13]   Li W L, Xu L P, Zhang Y K, et al.Lipoprotein (a) binds to recombinant nontypeable Haemophilus influenzae aspartase. American Journal of Clinical and Experimental Medicine, 2015, 3(5): 314-321.
doi: 10.11648/j.ajcem.20150305.31
[14]   Albers J J, Hazzard W R.Immunochemical quantification of human plasma Lp(a) lipoprotein. Lipids, 1974, 9(1): 15-26.
doi: 10.1007/BF02533209 pmid: 4359204
[15]   Romagnuolo R, Marcovina S M, Boffa M B, et al.Inhibition of plasminogen activation by apo(a): role of carboxyl-terminal lysines and identification of inhibitory domains in apo(a). Journal of Lipid Research, 2014, 55(4): 625-634.
doi: 10.1194/jlr.M036566 pmid: 3966697
[16]   Schmidt K, Noureen A, Kronenberg F, et al.Structure, function, and genetics of lipoprotein(a). Journal of Lipid Research, 2016, 57(8): 1339-1359.
doi: 10.1194/jlr.R067314 pmid: 27074913
[17]   许颖, 纪智星, 韩润林. 重组金黄色葡萄球菌次黄嘌呤单核苷酸脱氢酶与脂蛋白(a)的相互作用. 微生物学通报, 2011,38(9): 1405-1411.
[17]   Xu Y, Ji Z X, Han R L.The interaction between lipoprotein(a) and recombinant inosine 5'-monophosphate dehydrogenase derived from Staphylococcus aureus. Microbiology China, 2011,38(9): 1405-1411.
[18]   Xu L P, Bai W C, Ji Z X, et al.Lipoprotein (a) binds to C-terminal lysine residues of recombinant enolase derived from group A streptococcus. Clinical and Experimental Medicine, 2015, 3(5): 327-331.
doi: 10.11648/j.ajcem.20150305.33
[19]   代霄燕, 许丽萍, 白文成, 等. 重组A群链球菌三磷酸甘油醛脱氢酶与脂蛋白(a)的相互作用. 内蒙古农业大学学报(自然科学版), 2011,32(3): 27-31.
[19]   Dai X Y, Xu L P, Bai W C, et al.The interaction between lipoprotein(a) and recombinant glyceraldehyde-3-phosphate dehydrogenase derived from group A streptococcus. Journal of Inner Mongolia Agricultural University, 2011,32(3): 27-31.
[20]   Liu E, Li W L, Han R L.The interaction between recombinant protein F derived from nontypeable Haemophilus influenzae and lipoprotein(a). American Journal of Clinical and Experimental Medicine, 2015, 4(3): 338-343.
doi: 10.11648/j.ajcem.20150306.11
[21]   纪智星, 白文成. 人脂蛋白(a)与金黄色葡萄球菌重组α-烯醇化酶的相互作用. 内蒙古农业大学学报(自然科学版), 2017,(2): 1-6.
[21]   Ji Z X, Bai W C.The interaction between human lipoprotein(a) and recombinant α-enolase derived from Staphylococcus aureus. Journal of Inner Mongolia Agricultural, 2017,(2): 1-6.
[22]   王洋, 李文龙, 刘恩, 等. 铜绿假单胞菌二氢硫辛酸酰胺脱氢酶的重组表达及其与脂蛋白(a)的相互作用. 微生物学通报, 2017, 44(1): 172-177.
doi: 10.13344/j.microbiol.china.160093
[22]   Wang Y, Li W L, Liu E, et al.The interaction between lipoprotein(a) and recombinant dihydrolipoamide dehydrogenase derived from Pseudomonas aeruginosa. Microbiology China, 2017,44(1): 172-177.
doi: 10.13344/j.microbiol.china.160093
[1] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[2] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[3] LI Bing-juan,LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei. Advances in Protein Engineering of the Old Yellow Enzyme OYE Family[J]. China Biotechnology, 2020, 40(3): 163-169.
[4] QI Jia-long, GAO Rui-yu, JIN Shu-mei, GAO Fu-lan, YANG Xu, MA Yan-bing, LIU Cun-bao. Expression and Identification of Varicella-Zoster Virus Glycoprotein E and Immunogenicity Assay[J]. China Biotechnology, 2019, 39(8): 17-24.
[5] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[6] WANG Pei, CHEN Kai, GAO Song. Production of Restriction Endonuclease Not I Utilizing CpG DNA Methylase M.Sss I Co-expression Vector[J]. China Biotechnology, 2017, 37(8): 51-58.
[7] HU Li-qiang, ZHENG Wen, ZHONG Yi, DU Dan, YANG Hao, GONG Meng. Comparison of Expression and Activity of Antiviral Protein RC28 in Escherichia coli and Pichia pastoris[J]. China Biotechnology, 2017, 37(1): 14-20.
[8] WEN Sai, LIU Huai-ran, XU Dan-dan . Advances in Research on Lysozyme and Strategies for New Antimicrobial Activity[J]. China Biotechnology, 2015, 35(8): 116-125.
[9] SUN Shao-fei, WANG Bei-lei, YUAN Ting, ZHANG Bing, GUO Gang, ZHANG Ru. Expression and Fusion Protein TAT-NLS-Nkx6.2 in E.coli and Its Purification and Biological Analysis[J]. China Biotechnology, 2013, 33(9): 24-30.
[10] HUANG Zhen-rong, ZHANG San-jun, QIAN Min, REN Hua. Expression, Purification and Biological Activity of Escherichia coli RecQ Helicase[J]. China Biotechnology, 2013, 33(3): 21-27.
[11] WU Hai-li, ZHANG San-jun, DU Bing, QIAN Min, REN Hua. Expression, Purification and Biological Activity of Arginine Mutants of Bacillus subtilis RecQ Helicase[J]. China Biotechnology, 2013, 33(12): 29-34.
[12] WANG Feng, SUN Han-xiao, LI Xiu-ying, ZHANG Guang, MO Xue-mei. Expression and Purification of vMIP-II-TfN in Pichia pastoris[J]. China Biotechnology, 2011, 31(10): 23-28.
[13] SHI Ji-Jing, LIU Chao-Ai, JU Kun, YANG Jie-Wei, GAO Meng-Xing, YANG Fan. Establishment of hIL-6 Protein Binding to sIL-6R Model for Screening IL-6 Inhibitors[J]. China Biotechnology, 2009, 29(11): 60-65.
[14] CHEN Wu, MO Wei, ZHANG Yan-Ling, SONG Gang, SONG Hou-Yan. Expression, Production Purification and Identification of Recombinant Human Plasminogen Gene in Yeast[J]. China Biotechnology, 2009, 29(10): 18-22.
[15] LUO Jian-Beng, GU Shi-Han, DIAO Hang, CEN Dong, LV Jian-Xin, CHU Zhi-Guang, FEI Ren-Chi-. Expression of NK4 Protein in Escherichia coli and Its Biological Characterization Analysis[J]. China Biotechnology, 2009, 29(10): 33-37.