Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (1): 27-37    DOI: 10.13523/j.cb.20170105
    
Dissolved Carbon Dioxide Effects on Glucoamylase Synthesis of Aspergillus niger in Batch and Chemostat Cultures
WANG Li-qun, LU Hong-zhong, CHU Ju, WANG Yong-hong
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
Download: HTML   PDF(1328KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The effect of different levels of elevated dissolved CO2 availability(CO2 stress) was investigated in batch and chemostat cultures of Aspergillus niger by gassing with CO2-enriched air. Under batch cultures, higher elevated dissolved CO2 availability in culture medium resulted in a more significant decrease in specific growth rate, whereas it appeared to have a positive effect on glucoamylase synthesis. Under chemostat cultures with low dilution rate (D1=0.05/h), high levels of dissolved CO2 led to no reduction of specific growth rate, but an increase of glucoamylase production. Whereas at high dilution rate (D2=0.08/h), both substrate uptake and cell grow were more severely inhibited by more elevated dissolved CO2. The effect of elevated dissolved CO2 availability on the fermentation process depends on CO2 levels as well as dilution rate. Therefore, the influence of carbon dioxide on cell growth and glucoamylase production dependent on CO2 levels, cultivation mode and specific metabolic activity, which would be helpful for the design of specific growth rate in scale-up of glucoamylase fermentation by Aspergillus niger.



Key wordsAspergillus niger      Glucoamylase      Growth repression      CO2 stress     
Received: 25 October 2016      Published: 25 January 2017
ZTFLH:  Q815  
Cite this article:

WANG Li-qun, LU Hong-zhong, CHU Ju, WANG Yong-hong. Dissolved Carbon Dioxide Effects on Glucoamylase Synthesis of Aspergillus niger in Batch and Chemostat Cultures. China Biotechnology, 2017, 37(1): 27-37.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170105     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I1/27

[1] 郭艳梅,郑平,孙继宾. 黑曲霉作为细胞工厂——知识准备与技术基础. 生物工程学报,2010, 26(10):1410-1418. Guo Y M, Zheng P, Sun J B. Aspergillus niger as a potential cellular factory:prior knowledge and key technology. Chinese Journal of Biotechnology, 2010, 26(10):1410-1418.
[2] Melzer G, Dalpiaz A, Grote A, et al. Metabolic flux analysis using stoichiometric models for Aspergillus niger:comparison under glucoamylase-producing and non-producing conditions. Journal of Biotechnology, 2007, 132(4):405-417.
[3] Marin N J, Polaina J. Glucoamylases:structural and biotechnological aspects. Applied Microbiology and Biotechnology, 2011, 89(5):1267-1273.
[4] Mhairi M, Brian M. Effects of elevated dissolved CO2 levels on batch and continuous cultures of Aspergillus niger A60:an evaluation of experimental methods. Aplied and Environmental Microbiology,1997, 63(11):4171-4177.
[5] Song H, Lee J W, Choi S, et al. Effects of dissolved CO2 levels on the growth of Mannheimia succiniciproducens and succinic acid production. Biotechnology and Bioengineering, 2007, 98(6):1296-1304.
[6] Gros J.B., Dussap C.G., Catté M. Estimation of O2 and CO2 solubility in microbial culture madia. Biotechnology Progress, 1999, 15(5):923-927.
[7] 赵凯,徐鹏举,谷光烨. 3,5-二硝基水杨酸比色法测定还原糖含量的研究. 食品科学, 2008, 29(8):3-7. Zhao K, Xu. P. J, Gu G Y. Study on determination of reducing sugar content using 3,5-dinitrosalicylic acid method. Food Science, 2008, 29(8):534-536.
[8] Youngquist J T, Lennen R M, Ranatunga D R, et al. Kinetic modeling of free fatty acid production in Escherichia coli based on continuous cultivation of a plasmid free strain. Biotechnology and Bioengineering, 2012, 109(6):1518-1527.
[9] Mcintyre M, Mcneil B. Dissolved carbon dioxide effects on morphology, growth, and citrate production in Aspergillus niger A60. Enzyme and Microbial Technology, 1997, 20(2):135-142.
[10] Mcintyre M, Mcneil B. Effect of carbon dioxide on morphology and product synthesis in chemostat cultures of Aspergillus niger A60. Enzyme and Microbial Technology, 1997, 21(7):479-483.
[11] El-Sabbagh N, Mcneil B, Harvey L M. Dissolved carbon dioxide effects on growth, nutrient consumption, penicillin synthesis and morphology in batch cultures of Penicillium chrysogenum. Enzyme and Microbial Technology, 2006, 39(2):185-190.
[12] Lu S, Eiteman M A, Altman E. Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations. Journal of Biotechnology, 2009, 143(3):213-223.
[13] Richard L, Guillouet S E, Uribelarrea J L. Quantification of the transient and long-term response of Saccharomyces cerevisiae to carbon dioxide stresses of various intensities. Process Biochemistry, 2014, 49(11):1808-1818.
[14] Aguilera J, Petit T, De Winde J H, et al. Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations. FEMS Yeast Research, 2005, 5(6-7):579-593.
[15] Yusaku F, Hiroshi M. Improved glucoamylase production by Rhizo-pus sp.A11 using metal-ion supplemented liquid medium. Journal of Fermentation and Bioengineering, 1996, 82(6):554-557.

[1] SHI Hui-lin, SUN Jing-chun, ZHANG Rong-kai, GAO Da-qi, WANG Ze-jian, GUO Mei-jin, ZHOU Li-qin, ZHUANG Ying-ping. Application of the Electronic Nose on the Online Feedback Control of Methanol Concentration during Glucoamylase Fermentation Optimization by Pichia pastoris[J]. China Biotechnology, 2016, 36(3): 68-76.
[2] CHEN Xiang-fen, LU Hong-zhong, TANG Wen-jun, TANG Yin, CHU Ju, ZHUANG Ying-pin, ZHANG Si-liang. Comparison of Two Aspergillus niger Mutant and Wild Strains Based on q-rate and Flux Balance Analysis[J]. China Biotechnology, 2014, 34(8): 35-40.
[3] LI Gang-rui, LI Lin-li, FAN Xang, MENG Yan-fa. Immobilization and Properties of Lipase from Aspergillus niger on Sol-gels,Hydrophobic Supports[J]. China Biotechnology, 2014, 34(4): 78-84.
[4] LI Rui-rui, LIU Dian-lei, YANG Qing, HAO Qiong, JIANG Kai-kai, LI Pi-wu. Optimization of Fermentation Conditions for Glucose Oxidase Production by Aspergillus niger using Response Surface Method[J]. China Biotechnology, 2013, 33(10): 111-116.
[5] LI Ming, LIU Meng, HUANG Yun-yan, ZHOU Li-ying, SUN Xin, LU Fu-ping. Establishment and Optimization of Agrobacterium tumefaciens-mediated Transformation System of Aspergillus niger[J]. China Biotechnology, 2012, 32(01): 56-63.
[6] HUANG Wen, YANG Hong-jiang, QIN Hui-bin. Genetic Analysis of T-DNA Insertion Site and Characterization of One Aspergillus niger Mutant with Low Cellulase Activity[J]. China Biotechnology, 2011, 31(04): 60-64.
[7] QIN Hui-bin, YANG Hong-jiang, HUANG Wen, LI Ling-yan. Expression of cbhB Gene Driven by Promoter glaA in Aspergillus niger[J]. China Biotechnology, 2010, 30(11): 34-38.
[8] LIU Lu, GENG Pei-Pei, ZUO Jie-Zhen, SHI Bi-Gong. Overview on Promoter of Glucoamylase Gene glaB from Aspergillus oryzae[J]. China Biotechnology, 2010, 30(04): 116-119.