Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (10): 45-52    DOI: 10.13523/j.cb.20161007
    
The Efficient Carbon-oxygen Transformation and Regulation of Desert Microalgaes
WANG Cai-xia1, ZHANG Teng-jiang2, TENG Jie2, FENG Xu-dong2, LI Chun1,2
1. School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China;
2. School of Life Science, Beijing Institute of Technology, Beijing 100081, China
Download: HTML   PDF(1284KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to produce biofuels by the use of microalgae and improve the efficiency of carbon-oxygen transfer in a confined environment, the growth of desert microalgae BG18-3, BE6-2 and freshwater cyanobacterial strain 7924 were thoroughly explored in stressed conditions, and microalgae BG18-3 was found to have the best performance in some stressed conditions. Compared to other two strains of microalgae in static culture, desert microalgae BG1-3 had an advantage on microalgae biomass accumulation and nitrogen and phosphorus removal efficiency, of which the biomass dry weight reached 0.26 g/L, nitrogen and phosphate removal efficiency were 36% and 99%, respectively. In the aeration culture of desert microalgae BG18-3 ventilation, the highest biological dry weight (3% CO2 aeration cultured for 16 days) and the biomass yield reached 2.63 g/L and 164.0 mg/L·d respectively, and the concentration of CO2 at the outlet dropped to 0.04%, while the concentration of O2 increased by 0.68%, which indicates that the BG18-3 has the potential to be a biological medium in a confined environment. Finally, the BG18-3 was identified as Scenedesmus littoralis according to the results of rDNA 18s analysis.



Key wordsCarbon-oxygen transformation      Stress resistance      Desert microalgae     
Received: 25 March 2016      Published: 25 October 2016
ZTFLH:  Q819  
Cite this article:

WANG Cai-xia, ZHANG Teng-jiang, TENG Jie, FENG Xu-dong, LI Chun. The Efficient Carbon-oxygen Transformation and Regulation of Desert Microalgaes. China Biotechnology, 2016, 36(10): 45-52.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20161007     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I10/45

[1] Vasudevan P T, Briggs M. Biodiesel production current state of the art and challenges. J Ind Microbiol Biotechnol, 2008, 35:421-430.
[2] Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 2008, 54(4): 621-639.
[3] DOE U S. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program, 2010.
[4] 首届先进生物燃料论坛在京召开取得5项重要成果.. http://www.gov.cn/gzdt/2010-06/16/content_1628515.htm.
[5] Hu C X, Liu Y D, Huang Z B, et al.The fine structure and development of algal crust in desert area. Acta Hydrobiological Sinica, 2000, 24(1): 11-18.
[6] Miyachi S, Tsuzuki M, Avramova S T. Utilization modes of inorganic carbon for photosynthesis in various species of Chlorella. Plant and Cell Physiol, 1983, 24(3): 441-445.
[7] Singh N K, Dhar D W. Nitrogen and phosphorus scavenging potential in microalgae. Indian J Biotechnol, 2007, 6(1): 52-56.
[8] 陈兰周,刘永定,李敦海,等.荒漠藻类及其结皮的研究. 中国科学基金, 2003, 2: 90-93. Chen L Z, Liu Y D, Li D H, et al. The research process/progress of desert algae and crust. Bulletin of National Natural Science Foundation of China, 2003, 2: 90-93.
[9] 祖路皮亚·载买尔, 阿曼古力·海瓦尔,吾甫尔·米吉提. 新疆尉犁县 3 株荒漠微藻的重金属抗性初步分析. 安徽农业科学, 2015, 43(15): 205-208. Zulpiye Zemir,Amangul Hewer, Ghopur Mijit. Preliminary analysis of heavy metal resistance of the three desert microalgae in Yuli County of Xinjiang. Journal of Anhui Agri, 2015, 43(15): 205-208.
[10] 席玮芳, 高宏, 兰波, 等. 适于沙漠地下水培养的耐碳酸氢钠产油微藻. 水生生物学报, 2015, 39(2): 414-418. Xi W F, Gao H, Lan B, et al. Na2HCO3-tolerant oil-producing microalgae that are suitable for cultivation with desert groundwater. Acta Hydrobiologica Sinica, 2015, 39(2): 414-418.
[11] 李春, 徐檬, 徐小琳. 氮, 磷对富油荒漠微藻混养生长及总脂的影响. 石河子大学学报: 自然科学版, 2012, 30(4): 401-406. Li C, Xu M, Xu X L. Effects of nitrogen and phosphorus on the mixotrophic growth and total Lipid of high-lipid desert microalgae. Journal of Shihezi University(Natural Science), 2012, 30(4): 401-406.
[12] 夏春,陈琨,苏维词.水中磷酸盐测定方法对比. 贵州科学, 2014, 32(4): 86-89. Xia C, Chen K, Su W C. Comparison on study of methods for determination of phosphate in water. Guizhou Science, 2014, 32(4): 86-89.
[13] 冷家峰,刘仙娜,王泽俊.紫外吸收光度法测定蔬菜鲜样中硝酸盐. 理化检验:化学分册, 2004, 40: 288-289. Leng J F, Liu X N, Wang Z J. UV-spectrophotometric determination of nitrates in fresh vegetables. Physical Testing and Chemical Analysis Part B:Chemical Analgsis, 2004, 40: 288-289.
[14] Cheng L. Study on CO2 removal from closed air by microalgae (enzyme) integrated membrane bioreactor. Hangzhou: Zhejiang University, 2006.
[15] Li Y Q, Zhang X W. Comparison study of genome and extraction methods from Cyanobacterium. Journal of Shaanxi University of Science & Technology. 2009, 3(27): 9-16.
[16] 李芳芳,隋正红,龚春霞,等. 5种沙漠微藻的分离鉴定及其18S rDNA保守区片段差异分析. 石河子大学学报(自然科学版), 2012, 30(3): 265-270. Li F F, Sui Z H, Gong C X, et al. Isolation and identification of five desert microalgae and analysis of 18S rDNA conserved fragment. Journal of Shihezi University(Natural Science), 2012, 30(3): 265-270.
[17] 周洪琪, Renaud S M, Parry D L,等. 温度对析月泛形藻、护状麦形藻和巴夫藻的生长、总脂肪含量以及脂肪酸组成的影响. 水产学报, 1996, 20(3): 235-240. Zhou H Q. Renaud S M, Parry D L, et al. Effect of temperature on growh, total lipid content and fatty acid composition of the microalgae, Nitzschia clostorium,Nitzschia paleacea and Pa vlova sp. Journal of Fisheries of China, 1996, 20(3): 235-240.
[18] Raven J A, Geider R J. Temperature and algal growth. New Phycol, 1988, 110(4): 441-461.
[19] 尹建云,孟海华,张学松,等. 酶解糖异养培养微藻发酵条件的优化及生产试验. 食品与发酵工业, 2006, 32(5): 55-61. Yin J Y, Meng H H, Zhang X S, et al. Optimization on fermentation conditions and its production for heterotrophic culture of microalgae with enzymolyzed starch sugar. Food and Fermentation Industries, 2006, 32(5): 55-61.
[20] Jiang Y, Chen F. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii. J Am Oil Chem, 2000, 77(6): 613-617.
[21] Rochell G T. Amine scrubbing for CO2 captur. Science, 2009, 325(5948): 1652-1654.
[22] Yuichiro Kitagawa, Keita Suzuki, Akihiro Yoneda, et al. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology, 2004, 62(7):1186-1197.

No related articles found!