Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (8): 99-104    DOI: 10.13523/j.cb.20160813
    
Fibroblast Growth Factor and Bone Related Diseases
GONG Wei-yue1, TIAN Hai-shan1, LI Xiao-kun1,2, JIANG Chao1,2
1. Wenzhou Medical University, Whenzhou 325035, China;
2. Bioreactor with the Drug Development Project of the Ministry of Education Research Center, Jilin Agricultural University, Changchun 130118, China
Download: HTML   PDF(685KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bone diseases is one of the common clinical chronic disease in the elderly, and serious damage to health. Previous studies show that FGF family members can treat bone-related diseases, as osteoporosis, osteoarthritis and other syndrome caused by these two disease. However, it's still not completely clear for the mechanism. In addition, different FGF species, ages have different therapeutic effects on bone. Therefore, the different FGF for different bone-related diseases was summarized.



Key wordsOsteoarthritis      Osteoporosis      Fibroblast Growth Factor     
Received: 30 November 2015      Published: 25 August 2016
ZTFLH:  W819  
Cite this article:

GONG Wei-yue, TIAN Hai-shan, LI Xiao-kun, JIANG Chao. Fibroblast Growth Factor and Bone Related Diseases. China Biotechnology, 2016, 36(8): 99-104.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160813     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I8/99

[1] 韩萨茹拉.成纤维细胞生长因子(FGF)研究进展.安徽农业科学, 2009, 37(7):3008-3010. SA Ru-la. Review on fibroblast growth factor (FGF). Journal of Anhui Agri Sci, 2009,37(7):3008-3010.
[2] Nunes Q M, Li Y, Sun C, et al. Fibroblast growth factors as tissue repair and regeneration therapeutics. Peerj, 2015, 4(5):e1535.
[3] Kan S H, Elanko N, Johnson D, et al. Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis. Am J Hum Genet, 2002,70(2):472-486.
[4] Teven C M, Farina E M, Rivas J, et al. Fibroblast growth factor (FGF) signaling in development and skeletal diseases. Genes Dis, 2014, 1(2):199-213.
[5] Yan D, Chen D, Cool S M, et al. Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Res Ther, 2011, 13(4):130.
[6] Harada S, Rodan G A. Control of osteoblast function and regulation of bone mass. Nature, 2003, 423(6937):349-355.
[7] Zou W, Izawa T, Zhu T, et al. Talin1 and Rap1 are critical for osteoclast function. Mol Cell Biol, 2013, 33(4):830-844.
[8] Lu X, Su N, Yang J, et al. Fibroblast growth factor receptor 1 regulates the differentiation and activation of osteoclasts through Erk1/2 pathway. Biochem Biophys Res Commun, 2009, 390(3):494-499.
[9] Soung D Y, Kalinowski J, Baniwal S K, et al. Runx1-mediated regulation of osteoclast differentiation and function. Mol Endocrinol, 2014, 28(4):546-553.
[10] Mirza M A, Karlsson M K, Mellstr m D, et al. Serum fibroblast growth factor-23(FGF-23) and fracture risk in elderly men. Bone Miner Res, 2011, 26(4):857-864.
[11] Wang H, Yoshiko Y, Yamamoto R, et al. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. Bone Miner Res, 2008, 23(6):939-948.
[12] Shalhoub V, Ward S C, Sun B, et al. Fibroblast growth factor 23(FGF23) and alpha-klotho stimulate osteoblastic MC3T3.E1 cell proliferation and inhibit mineralization. Calcif Tissue Int, 2011, 89(2):140-150.
[13] Rhee Y, Bivi N, Farrow E, et al. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone, 2011, 49(4):636-643.
[14] Raimann A, Ertl D A, Helmreich M, et al. Fibroblast growth factor 23 and Klotho are present in the growth plate. Connect Tissue Res, 2013, 54(2):108-117.
[15] Wei W, Dutchak P A, Wang X, et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc Natl Acad Sci U S A, 2012, 109(8):3143-3148.
[16] Zamli Z, Robson B K, Tarlton J F, et al. Subchondral bone plate thickening precedes chondrocyte apoptosis and cartilage degradation in spontaneous animal models of osteoarthritis. Biomed Res Int, 2014, 2014(16):751-759.
[17] Im H J, Li X, Muddasani P, et al. Basic fibroblast growth factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes. Cell Physiol, 2008, 215(2):452-463.
[18] Ellman M B, Yan D, Ahmadinia K, et al. Fibroblast growth factor control of cartilage homeostasis. Cell Biochem, 2013, 114(4):735-742.
[19] Im H J, Muddasani P, Natarajan V, et al. Basic fibroblast growth factor stimulates matrix metalloproteinase-13 via the molecular cross-talk between the mitogen-activated protein kinases and protein kinase C delta pathways in human adult articular chondrocytes. Biol Chem, 2007, 282(15):11110-11121.
[20] Schmal H, Zwingmann J, Fehrenbach M, et al. bFGF influences human articular chondrocyte differentiation. Cytotherapy, 2007, 9(2):184-193.
[21] Sonal D. Prevention of IGF-1 and TGFbeta stimulated type Ⅱ collagen and decorin expression by bFGF and identification of IGF-1 mRNA transcripts in articular chondrocytes. Matrix Biol, 2001, 20(4):233-242.
[22] Zhang X, Ibrahimi O A, Olsen S K, et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. Biol Chem, 2006, 281(23):15694-15700.
[23] Chia S L, Sawaji Y, Burleigh A, et al. Fibroblast growth factor 2 is an intrinsic chondroprotective agent that suppresses ADAMTS-5 and delays cartilage degradation in murine osteoarthritis. Arthritis Rheum, 2009, 60(7):2019-2027.
[24] Kaul G, Cucchiarini M, Arntzen D, et al. Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2(FGF-2) in vivo. Gene Med, 2006, 8(1):100-111.
[25] Hunter D J. Pharmacologic therapy for osteoarthritis——the era of disease modification. Nat Rev Rheumatol, 2011, 7(1):13-22.
[26] Ellsworth J L, Berry J, Bukowski T, et al. Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartilage, 2002, 10(4):308-320.
[27] Lohmander L S, Hellot S, Dreher D, et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis:a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol, 2014, 66(7):1820-1831.
[28] Ohbayashi N, Shibayama M, Kurotaki Y, et al. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev, 2002, 16(7):870-879.
[29] Liu Z, Xu J, Colvin J S, et al. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev, 2002, 16(7):859-869.
[30] Shimoaka T, Ogasawara T, Yonamine A, et al. Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10. Biol Chem, 2002, 277(9):7493-7500.
[31] Ellsworth J L, Berry J, Bukowski T, et al. Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartilage, 2002, 10(4):308-320.
[32] Whitsett J A, Clark J C, Picard L, et al. Fibroblast growth factor 18 influences proximal programming during lung morphogenesis. Biol Chem, 2002, 277(25):22743-22749.
[33] Moore E E, Bendele A M, Thompson D L, et al. Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartilage, 2005, 13(7):623-631.
[34] Mithoefer K, Williams R J, Warren R F, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. Bone Joint Surg Am, 2005, 87(9):1911-1920.
[35] Power J, Hernandez P, Guehring H, et al. Intra-articular injection of rhFGF-18 improves the healing in microfracture treated chondral defects in an ovine model. Orthop Res, 2014, 32(5):669-676.
[36] Barr L, Getgood A, Guehring H, et al. The effect of recombinant human fibroblast growth factor-18 on articular cartilage following single impact load. Orthop Res, 2014, 32(7):923-927.
[37] Reinhold M I, Abe M, Kapadia R M, et al. FGF18 represses noggin expression and is induced by calcineurin. Biol Chem, 2004, 279(37):38209-38219.
[38] Valverde-Franco G, Binette J S, Li W, et al. Defects in articular cartilage metabolism and early arthritis in fibroblast growth factor receptor 3 deficient mice. Hum Mol Genet, 2006, 15(11):1783-1792.
[39] Eswarakumar V P, Monsonego-Ornan E, Pines M, et al. The Ⅲc alternative of Fgfr2 is a positive regulator of bone formation. Development, 2002, 129(16):3783-3793.
[40] Ornitz D M, Marie P J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev, 2002, 16(12):1446-1465.
[41] Ellman M B, Yan D, Ahmadinia K, et al. Fibroblast growth factor control of cartilage homeostasis. Cell Biochem, 2013, 114(4):735-742.
[42] Ohbayashi N, Shibayama M, Kurotaki Y, et al. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev, 2002, 16(7):870-879.
[43] Liu Z, Xu J, Colvin J S, et al. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev, 2002, 16(7):859-869.
[44] Bosetti M, Leigheb M, Brooks R A, et al. Regulation of osteoblast and osteoclast functions by FGF-6. Cell Physiol, 2010, 225(2):466-471.
[45] Uchii M, Tamura T, Suda T, et al. Role of fibroblast growth factor 8(FGF8) in animal models of osteoarthritis. Arthritis Res Ther, 2008, 10(4):1-10.
[46] Hung I H, Yu K, Lavine K J, et al. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod. Dev Biol, 2007, 307(2):300-313.

[1] QIN Rui-ping, LI Ling-xia, MA Xiao-ling, XI Ou-yan, ZHAO Ting, QIU Ling-ling, LI Jiang-wei. Inhibition of Osteoporosis in Ovariectomized Rats Using Follicle-stimulating Hormone Receptor Specific Polyclonal Antibody[J]. China Biotechnology, 2017, 37(6): 9-16.
[2] ZHENG Jie, JIANG Chao, LI Xiao-kun, TIAN Hai-shan. The Progression of Fibroblast Growth Factor 6[J]. China Biotechnology, 2017, 37(4): 110-114.
[3] DENG Chun-pin, YANG Bo, MEI Xiong, ZHENG Zan-shun, QU Wei. Measurement and Analysis of Recombinant Basic Fibroblast Growth Factor's Free Sulfhydryl[J]. China Biotechnology, 2016, 36(6): 76-80.
[4] YI Shan-yong, YANG Jing, GUAN Li-li, WANG Yan-fang, HUANG Jian, WANG Li-yong, LI Hai-yan, LI Xiao-kun, JIANG Chao. Research Progresses On The Fibroblast Growth Factor 9[J]. China Biotechnology, 2015, 35(7): 94-101.
[5] ZHANG Chao, XIANG Li-na, CHEN De-pei, LÜ Xin-xin, ZHAO Yi-tong, WANG Lu-yao, XIAO Jian, ZHANG Hong-yu. The Development of the Study on bFGF Promote the Nerve Injury Repair[J]. China Biotechnology, 2015, 35(6): 75-79.
[6] HUANG Peng-huang, WANG Ze, TIAN Hai-shan, ZHAO Hai-yang, LI Hai-yan, LI Xiao-kun. The Constructing and Purification of Recombinant Human Fibroblast Growth Factor 8b Expressed Vector[J]. China Biotechnology, 2013, 33(1): 14-19.
[7] WANG Yi, TIAN Hai-shan, LI Xiao-kun. The Development of Fibroblast Growth Factor 8[J]. China Biotechnology, 2011, 31(01): 75-80.
[8] LIN Jian-Cong, ZHANG Min-Jing, SU Zhi-Jian, CHEN Gong-Xia, QIU Zhuang-Wei, LOU Guo-Feng, XIANG Qi, HUANG E-Dong. Expression, Purification and Bioassay of Tat-aFGF Fusion Protein in Escherichia coli[J]. China Biotechnology, 2010, 30(05): 11-17.
[9] . Activity study of specific bFGF-binding phage[J]. China Biotechnology, 2009, 29(01): 23-26.
[10] . Selection of bFGF mimic peptide by phage display[J]. China Biotechnology, 2006, 26(05): 7-10.