Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (4): 89-97    DOI: 10.13523/j.cb.20170412
    
Progress in Designing of Inhibitors Mimicking α-Helical Peptide
CHEN Rong, YANG Fan, CHENG Xi-yao, SU Zheng-ding
Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan 430068, China
Download: HTML   PDF(1003KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Currently the discovery of inhibitors is mainly carried out through repeated high-throughput screening of small molecule compound libraries. The opportunity to find a leading compound largely depends on pre-defined compounds. The structure analysis of protein databank (PDB) has revealed that α-helix structure often exists in the interfaces of protein-protein interactions (PPIs). Therefore the scaffolds of α-helical peptides and the configuration of their hot spots can be utilized as templates for designing of appropriate inhibitors efficiently. The current progresses in the design of inhibitors mimicking α-helical peptides are summarized and the structures and principle of inhibitor scaffolds mimicking α-helix peptides are also discussed.

Key wordsSmall molecule      Structure mimicking      α-helix peptide      Peptide analog     
Received: 03 August 2016      Published: 25 April 2017
ZTFLH:  Q816  
  Q518.1  
Cite this article:

CHEN Rong, YANG Fan, CHENG Xi-yao, SU Zheng-ding. Progress in Designing of Inhibitors Mimicking α-Helical Peptide. China Biotechnology, 2017, 37(4): 89-97.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170412     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I4/89

[1] Bullock B N, Jochim A L, Arora P S. Assessing helical protein interfaces for inhibitor design. Journal of the American Chemical Society, 2011, 133(36):14220-14223.
[2] Kortemme T, Baker D. A simple physical model for binding energy hot spots in protein-protein complexes. Proceedings of the National Academy of Sciences, 2002, 99(22):14116-14121.
[3] B ttger V, B ttger A, Howard S F, et al. Identification of novel mdm2 binding peptides by phage display. Oncogene, 1996, 13(10):2141-2147.
[4] Azzarito V, Long K, Murphy N S, et al. Inhibition of -helix-mediated protein-protein interactions using designed molecules. Nature Chemistry, 2013, 5(3):161-173.
[5] 曹晨,马堃.蛋白质二级结构指定. 生物信息学, 2016, 14(3):181-187. Cao C,Ma K. Protein secondary structure assignment. Chinese Journal of Bioinformatics,2016, 14(3):181-187.
[6] Wang D, Liao W, Arora P S, et al. Enhanced metabolic stability and protein-binding properties of artificial α helices derived from a hydrogen-bond surrogate:application to Bcl-xL. Angewandte Chemie, 2005, 44(40):6525-6529.
[7] Henchey L K, Porter J R, Ghosh I, et al. High specificity in protein recognition by hydrogen-bond-surrogate α-helices:selective inhibition of the p53/MDM2 complex. Chembiochem, 2010, 11(15):2104-2107.
[8] Pellegrini M, Royo M, Chorev M, et al. Conformational consequences of i, i+3 cystine linkages:nucleation for α-helix. The Journal of Peptide Research, 1997, 49(5):404-414.
[9] Shiau A K, Barstad D, Loria P M, et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell, 1998, 95(7):927-937.
[10] Galande A K, Bramlett K S, Trent J O, et al. Potent inhibitors of LXXLL-based protein-protein interactions. ChemBioChem, 2005, 6(11):1991-1998.
[11] Sia S K, Carr P A, Cochran A G, et al. Short constrained peptides that inhibit HIV-1 entry. Proceedings of the National Academy of Sciences, 2002, 99(23):14664-14669.
[12] Mauran L, Kauffmann B, Odaert B, et al. Stabilization of an α-helix by short adjacent accessory foldamers. Competes Rendus Chimie, 2016, 19(1-2):123-131.
[13] Tian Y, Wang D, Li J, et al. A proline-derived transannular N-cap for nucleation of short α-helical peptides. Chemical Communications, 2016, 52(59):9275-9278.
[14] Wilson A J. Inhibition of protein-protein interactions using designed molecules. Chemical Society Reviews, 2009, 38(12):3289-3300.
[15] Cheng R P, Gellman S H, DeGrado W F. β-Peptides:from structure to function. Chemical Reviews, 2001, 101(10):3219-3232.
[16] Lee E F, Sadowsky J D, Smith B J, et al. High-resolution structural characterization of a helical α/β-peptide foldamer bound to the anti-apoptotic protein bcl-xL. Angewandte Chemie, 2009, 121(24):4382-4386.
[17] Liu M, Li C, Pazgier M, et al. D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proceedings of the National Academy of Sciences, 2010, 107(32):14321-14326.
[18] Grison C M, Miles J A, Robin S, et al. An α-helix-mimicking 12, 13-helix:selective protein-protein interaction inhibition using designed α/β/γ-foldamers. Angewandte Chemie, 2016,55(37):11096-11100.
[19] Orner B P, Ernst J T, Hamilton A D. Toward proteomimetics:terphenyl derivatives as structural and functional mimics of extended regions of an α-helix. Journal of the American Chemical Society, 2001, 123(22):5382-5383.
[20] Chen L, Yin H, Farooqi B, et al. p53α-Helix mimetics antagonize p53/MDM2 interaction and activate p53. Molecular Cancer Therapeutics, 2005, 4(6):1019-1025.
[21] Yin H, Lee G, Sedey K A, et al. Terphenyl-based Bak BH3α-helical proteomimetics as low-molecular-weight antagonists of Bcl-xL. Journal of the American Chemical Society, 2005, 127(29):10191-10196.
[22] Rodriguez J M, Hamilton A D. Intramolecular hydrogen bonding allows simple enaminones to structurally mimic the i, i+4, and i+7 residues of an α-helix. Tetrahedron Letters, 2006, 47(42):7443-7446.
[23] Rodriguez J M, Nevola L, Ross N T, et al. Synthetic inhibitors of extended helix-protein interactions based on a biphenyl 4, 4'-dicarboxamide scaffold. ChemBioChem, 2009, 10(5):829-833.
[24] Davis J M, Truong A, Hamilton A D. Synthesis of a 2, 3'; 6', 3″-Terpyridine scaffold as an α-helix mimetic. Organic Letters, 2005, 7(24):5405-5408.
[25] Ernst J T, Becerril J, Park H S, et al. Design and application of an α-helix-mimetic scaffold based on an oligoamide-foldamer strategy:antagonism of the bak BH3/Bcl-xL complex. Angewandte Chemie, 2003, 115(5):553-557.
[26] Oguri H, Oomura A, Tanabe S, et al. Design and synthesis of a trans-fused polycyclic ether skeleton as an α-helix mimetic scaffold. Tetrahedron Letters, 2005, 46(13):2179-2183.
[27] Antuch W, Menon S, Chen Q Z, et al. Design and modular parallel synthesis of a MCR derived α-helix mimetic protein-protein interaction inhibitor scaffold. Bioorganic & Medicinal Chemistry Letters, 2006, 16(6):1740-1743.
[28] Jacoby E. Biphenyls as potential mimetics of protein α-helix. Bioorganic & Medicinal Chemistry Letters, 2002, 12(6):891-893.
[29] Williams A B, Weiser P T, Hanson R N, et al. Synthesis of biphenyl proteomimetics as estrogen receptor-α coactivator binding inhibitors. Organic Letters, 2009, 11(23):5370-5373.
[30] Hamilton A D,Kim I C. Diphenylindane-based proteomimetics reproduce the projection of the i, i+3, i+4, and i+7 residues on an α-helix. Organic Letters, 2006, 8(9):1751-1754.
[31] Zhang Z, Li X, Song T, et al. An anthraquinone scaffold for putative, two-face Bim BH3α-helix mimic. Journal of Medicinal Chemistry, 2012, 55(23):10735-10741.
[32] Zhang Z, Liang X, Li X, et al. Design and application of a rigid quinazolone scaffold based on two-face Bim α-helix mimicking. European Journal of Medicinal Chemistry, 2013, 69:711-718.
[33] Li X, Wang Z, Feng Y, et al. Two-face, two-turn α-helix mimetics based on a cross-acridine scaffold:analogues of the bim BH3 domain. ChemBioChem, 2014, 15(9):1280-1285.
[34] Lee J H, Oh M, Kim H S, et al. Converting one-face α-helix mimetics into amphiphilic α-helix mimetics as potent Inhibitors of protein-protein interactions. ACS Combinatorial Science, 2015, 18(1):36-42.
[1] LI Wen,CHEN Jie,HU Wei-nan,QI Ya-yun,FU Yi-hong,LIU Jia-min,WANG Zhen-chao,OUYANG Gui-ping. Research Advances in the Study of EGFR Mutations Resistance and Its Small Molecule Inhibitors[J]. China Biotechnology, 2019, 39(10): 97-104.
[2] Xiao-chen LIU,Hu LIU,Liang ZHANG,Chun LI. Enzymatic Glycosylation and Its Function in Metabolic Process of Cells[J]. China Biotechnology, 2018, 38(1): 69-77.