Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (3): 78-82    DOI: 10.13523/j.cb.20170311
    
Progress on Anti-cancer Molecule Mechanism of Human Umbilical Cord Mesenchymal Stem Cells
CHEN Wen-jie1,2,3, WANG Jian-yang4, YIN Ming2, YIN Chang-chang1
1. Jiujiang Key Laboratory of Translational Medicine, Basic Medical College, Jiujiang University, Jiujiang 332000, China;
2. The Second Hospital Afficiated of Nanchang University, Nanchang 330006, China;
3. Medicine School of Graduate Center, Nanchang University, Nanchang 330006, China;
4. The first hospital of Jiujiang, Jiujiang 332000, China
Download: HTML   PDF(480KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

HUMSCs is a stem cell population with high self-renewal capcity and multiple differention potential.They have secret special cytokine,induce apoptosis of tumor,migrate to tumor cells,adapt on gene editing and safety properties.Regarding their therapic value,many researchs use HUMSCs as cell-based treatment in tumor.The anti-tumor effect of HUMSCs is critically elaborated.



Key wordsHUMSCs      Tumor tropism      Anti-tumor     
Received: 26 September 2016      Published: 25 March 2017
ZTFLH:  Q819  
Cite this article:

CHEN Wen-jie, WANG Jian-yang, YIN Ming, YIN Chang-chang. Progress on Anti-cancer Molecule Mechanism of Human Umbilical Cord Mesenchymal Stem Cells. China Biotechnology, 2017, 37(3): 78-82.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170311     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I3/78

[1] 杨跃梅,沈倍奋.靶向抗肿瘤抗体一药物偶联物研究进展. 国际药学研究杂志, 2014,41(1):15-50. Yang Y M,Shen B F. Development of antibody-drug conjugates as targeted cancer therapeutics. Journal of International Pharmaceutical Research. 2014,41(1):15-50.
[2] Li Z, Fan D, Xiong D.Mesenchymal stem cells as delivery vectors for anti-tumor therapy. Stem Cell Investig.[2017-02-14]. http://sci.amegroups.com/article/view/5978/6693.
[3] Ding D C, Chang Y H, Shyu W C,et al. Human umbilical cord mesenchymal stem cells:a new era for stem cell therapy. Cell Transplant, 2015,24(3):339-347.
[4] 方洪松,周建林,彭昊,等. 不同来源间充质干细胞生物学特性差异. 中国组织工程研究, 2015,19(32):5243-5248. Fang H S,Zhou J L,Peng H,et al. Biological characteristics of different sources of mesenchymal stem cells. Journal of Clinical Rehabilitative Tissue Engineering Research, 2015,19(32):5243-5248.
[5] Nowakowski A, Walczak P, Janowski M,et al. Genetic engineering of mesenchymal stem cells for regenerative medicine. Stem Cells Dev, 2015,24(19):2219-2242.
[6] Nowakowski A, Walczak P, Lukomska B, et al. Genetic engineering of mesenchymal stem cells to induce their migration and survival. Stem Cell International in press.[2017-02-14]. https://www.hindawi.com/journals/sci/2016/4956063/.
[7] Gauthaman K, Fong C Y, Cheyyatraivendran S, et al. Extra-embryonic human Wharton's jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells. Reprod Biomed Online, 2012,24(2):235-246.
[8] Ganta C, Chiyo D, Ayuzawa R, et al. Rat umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post-tumor cell inoculation. Cancer Res, 2009,69(5):1815-1820.
[9] Ding D C,Shyu W C,Lin S Z. Mesenchymal stem cells.Cell Transplant,2011,20(1):5-14.
[10] Yan C H, Yang M,Li Z Z, et al.Suppressionof orthotopically implanted hepatocarcinoma in mice by umbilical cord-derived mesenchymal stem cells with sTRAIL gene expression driven by AFP promoter. Biomaterials, 2014,35(9):3035-3043.
[11] Rachakatla R S, Marini F, Weiss M L,et al. Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Ther, 2007,14(10):828-835.
[12] 胡文龙,吴平平,耿书国,等. 人脐带间充质干细胞分泌白细胞介素6促进骨肉瘤细胞增殖和迁移. 中国病理生理杂志, 2016, 32(2):201-207. Hu W L,Wu P P,Geng S G,et al. Chinese Journal of Pathophysiology, 2016,32(2):201-207.
[13] Dittmar T, Entschladen F.Migratory properties of mesenchymal stem cells.Adv Biochem Eng Biotechnol, 2013,129:117-136.
[14] Janssen A, Medema R H. Entosis:aneuploidy by invasion. Nat Cell Biol, 2011,13(3):199-201.
[15] Wang M, Ning X, Chen A, et al. Impaired formation of homotypic cell-in-cell structures in human tumor cells lacking alpha-catenin expression.[2017-02-14].http://www.nature.com/articles/srep12223.
[16] Krishna S, Overholtzer M.Mechanisms and consequences of entosis.Cell Mol Life Sci, 2016,73(11-12):2379-2386.
[17] Chao K C, Yang H T, Chen M. Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell-cell contact and internalization. J Cell Mol Med, 2012,16(8):1803-1815.
[18] Wolf P. The nature and signifiance of platelet products in human plasma. Br J Haematol, 1967,13(3):269-88.
[19] Im H, Shao H, Park Y I, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor.Nature Biotechnology, 2014,32(5):490-495.
[20] Robbins P D, Morelli A E. Regulation of immune responses by extracellular vesicles. Nature Reviews Immunology, 2014,14(3):195-208.
[21] Lee J K, Park S R, Jung B K, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by downregulating VEGF expression in breast cancer cells. PLoS One, 2013,8(12):e84256.
[22] Roccaro A M, Sacco A, Maiso P, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. Journal of Clinical Investigation, 2013,123(4):1542-1555.
[23] Akyurekli C, Le Y, Richardson R B, et al. A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Reviews and Reports, 2015, 11(1):150-160.
[24] 王喜梅. 微囊泡在组织再生中的研究进展. 医学综述, 2012, 18(13):1993-1995. Wang X M. Research advances of microvesicles in tissue regeneration.Medical Recapitulate, 2012, 18(13):1993-1995.
[25] Akyurekli C, Le Y, Richardson R B, et al. A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Reviews and Reports, 2015, 11(1):150-160.
[26] Wu S, Ju G Q, Du T,et al. Microvesicles derived from human umbilical cord wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo.PLoS One, 2013,8(4):e61366.
[27] Yang C,Mwaikambo B R,Zhu T, et al. Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. Am J Physiol Regul Integr Comp Physiol, 2008,294(2):R467-R476.
[28] Wong V L, Rieman D J, Aronson L,et al. Growth-inhibitory activity of interferon-beta against human colorectal carcinoma cell lines. Int J Cancer, 1989,43(3):526-530.
[29] Shen C J, Chan T F, Chen C C, et al.Human umbilical cord matrix-derived stem cells expressing interferon-β gene inhibit breast cancer cells via apoptosis. Oncotarget, 2016,7(23):34172-34179.
[30] Walczak H, Miller R E, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med, 1999,5(2):157-163.
[31] Yan C, Yang M, Li Z Z, et al.Suppressionof orthotopically implanted hepatocarcinoma in mice by umbilical cord-derived mesenchymal stem cells with sTRAIL gene expression driven by AFP promoter. Biomaterials, 2014,35(9):3035-3043.

[1] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[2] YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System[J]. China Biotechnology, 2020, 40(7): 70-81.
[3] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[4] LU Zhong-teng,HU Gao-wei. Identification Methods of Novel Cell Penetrating Peptides and Application in Antitumor Therapy[J]. China Biotechnology, 2019, 39(12): 50-55.
[5] Si LI,Yi-zhou ZHAI,Yu-ting LU,Fu-jun WANG,Jian ZHAO. The Optimization of A Novel Human-derived Cell-penetrating Peptide Used for Anti-cancer Treatment[J]. China Biotechnology, 2018, 38(7): 40-49.
[6] LIU Li-ping, ZHANG Chun, YIN Shuang, WANG Qi, ZHANG Yao, YU Rong, LIU Yong-dong, SU Zhi-guo. Design, Preparation, Characterization and Preliminary Evaluation of an Albumin Binding Peptide-Doxorubicin Conjugate[J]. China Biotechnology, 2017, 37(4): 68-75.
[7] CHEN Kun, CAO Xue-wei, ZHANG Qin, ZHAO Jian, WANG Fu-jun. Application of EGF-like Growth Factor-derived Tumor-homing Peptide for Antineoplastic Protein[J]. China Biotechnology, 2017, 37(3): 1-9.
[8] ZHOU Li-jun, LIU Wen-juan, QI Yong-hao, LI Miao. SOCS3 Negatively Regulates AKT through JNK and STAT3 Signal Pathways[J]. China Biotechnology, 2015, 35(9): 50-56.
[9] WANG Qi-fan, XUE Ying, FENG Xin-wei, ZHANG Ge. Prokaryotic Expression, Purification and Antitumor Activity Identification of Tumor Targeting iRGD-CDD Fusion Protein[J]. China Biotechnology, 2014, 34(12): 1-9.
[10] TIAN Shuo, YAO Wen-bin, XU Chen. Construction and Biological Assay of Integrated Interferon Mutant IIFN/165S[J]. China Biotechnology, 2013, 33(7): 8-12.
[11] XING Ya-ling, REN Le-ning, CHEN Xiao-juan, CHEN Zhong-bin. Development of Potential Therapeutics Targeting to Human Toll-like Receptor[J]. China Biotechnology, 2010, 30(10): 60-65.
[12] . Development of Potential Therapeutics Targeting to Human Toll-like Receptor[J]. China Biotechnology, 2010, 30(10): 0-0.