Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (4): 110-114    DOI: 10.13523/j.cb.20170415
    
The Progression of Fibroblast Growth Factor 6
ZHENG Jie1, JIANG Chao1,2, LI Xiao-kun1,2, TIAN Hai-shan1
1 School of Pharmaceutical Science, Wenzhou Medical University, Whenzhou 325035, China;
2 Biomedicine Collaborative Innovation Center, Wenzhou University, Wenzhou 325035, China
Download: HTML   PDF(663KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Fibroblast growth factor 6 (FGF6) is a member of the fibroblast growth factor family (FGFs), induces a transduction signal preferentially via FGFR1 and FGFR4. It has been found, the human FGF6 participates in the proliferation and differentiation of muscle-derived cell lines, accumulated almost exclusively in the myogenic lineage, playing an important role in muscle repair and regeneration. At the same time, FGF6 is an important regulator of bone formation and bone remodeling; it also expressed in the heart, indicating that it can promote myocardial cell proliferation and protect the apoptosis of myocardial cells; in the adult testis FGF6 transcript is also detected, indicating that it plays a role in prostate cancer. At present, it remained to be further studied and confirmed the function and the related mechanisms of FGF6 in a variety of diseases, but its biological activity especially in muscle regeneration has important significance and great potential application.

Key wordsMuscle-derived cell lines      Fibroblast growth factor receptor      Fibroblast growth factor 6      Muscle regeneration     
Received: 18 October 2016      Published: 25 April 2017
ZTFLH:  Q819  
Cite this article:

ZHENG Jie, JIANG Chao, LI Xiao-kun, TIAN Hai-shan. The Progression of Fibroblast Growth Factor 6. China Biotechnology, 2017, 37(4): 110-114.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170415     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I4/110

[1] Beenken A, Mohammadi M. The FGF family:biology, pathophysiology and therapy. Nat Rev Drug Discov, 2009, 8(3):235-253.
[2] 于欣, 张建中. 成纤维细胞生长因子及其受体研究进展. 宁夏医学院学报, 2004, 26(2):132-135. Yu X, Zhang J Z. The research progress of fibroblast growth factors and resceptors. Journal of Ningxia Medical University, 2004, 26(2):132-135.
[3] Itoh N, Ornitz D M. Fibroblast growth factors:from molecular evolution to roles in development, metabolism and disease. J Biochem, 2011, 149(2):121-130.
[4] Ohta H, Itoh N. Roles of FGFs as adipokines in adipose tissue development, remodeling, and metabolism. Front Endocrinol (Lausanne), 2014, 5(18):1-4.
[5] Fon Tacer K, Bookout A L, Ding X, et al. Research resource:comprehensive expression atlas of the fibroblast growth factor system in adult mouse.Mol Endocrinol, 2010, 24(10):2050-2064.
[6] Chakkalakal J V, Jones K M, Basson M A, et al. The aged niche disrupts muscle stem cell quiescence. Nature, 2012, 490(7420):355-360.
[7] Armand A S, Laziz I, Chanoine C. FGF6 in myogenesis. Biochim Biophys Acta, 2006, 1763(8):773-778.
[8] Kumar M, Chapman S C. Cloning and expression analysis of Fgf5, 6 and 7 during early chick development. Gene Expr Patterns, 2012, 12(7-8):245-253.
[9] Han A, Zhao H, Li J, et al. ALK5-mediated transforming growth factor β signaling in neural crest cells controls craniofacial muscle development via tissue-tissue interactions. Mol Cell Biol, 2014, 34(16):3120-3131.
[10] Katoh Y, Katoh M. Comparative genomics on mammalian Fgf6-Fgf23 locus. Int J Mol Med, 2005, 16(2):355-358.
[11] 时小燕, 郭靓. 成纤维细胞生长因子家族:生物学特性, 病理生理学作用及相关治疗方法. 国际药学研究杂志, 2009, 36(5):376-379. Shi X Y, Guo L. Fibroblast growth factor family:biological characteristics, pathophysiological role and related treatment methods. Journal of International Pharmaceutical Research, 2009, 36(5):376-379.
[12] Zhang X, Ibrahimi O A, Olsen S K, et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem, 2006, 281(23):15694-15700.
[13] Jump S S, Childs T E, Zwetsloot K A, et al. Fibroblast growth factor 2-stimulated proliferation is lower in muscle precursor cells from old rats. Exp Physiol, 2009, 94(6):739-748.
[14] Kwiatkowski B A, Kirillova I, Richard R E, et al. FGFR4 and its novel splice form in myogenic cells:Interplay of glycosylation and tyrosine phosphorylation. J Cell Physiol, 2008, 215(3):803-817.
[15] Cassano M, Dellavalle A, Tedesco F S, et al. Alpha sarcoglycan is required for FGF-dependent myogenic progenitor cell proliferation in vitro and in vivo. Development, 2011, 138(20):4523-4533.
[16] Jones N C, Fedorov Y V, Rosenthal R S, et al. ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol, 2001, 186(1):104-115.
[17] Armand A S, Launay T, Pariset C, et al. Injection of FGF6 accelerates regeneration of the soleus muscle in adult mice. Biochim Biophys Acta, 2003, 1642(1):97-105.
[18] Armand A S, Pariset C, Laziz I, et al. FGF6 regulates muscle differentiation through a calcineurin-dependent pathway in regenerating soleus of adult mice. J Cell Physiol, 2005, 204(1):297-308.
[19] Armand A S, Lécolle S, Launay T, et al. IGF-Ⅱ is up-regulated and myofibres are hypertrophied in regenerating soleus of mice lacking FGF6. Exp Cell Res, 2004, 297(1):27-38.
[20] Yu X W, Dumont N A, Rudnicki M A. Muscle stem cells at a glance. J Cell Sci, 2014, 127(21):4543-4548.
[21] Francesco Saverio T, Arianna D, Jordi D M, et al. Repairing skeletal muscle:regenerative potential of skeletal muscle stem cells. J Clin Invest, 2010, 120(1):11-19.
[22] Montarras D, L'honoré A, Buckingham M. Lying low but ready for action:the quiescent muscle satellite cell. FEBS J, 2013, 280(17):4036-4050.
[23] Seale P, Rudnicki M A. A new look at the origin, function, and "stem-cell" status of muscle satellite cells. Dev Biol, 2000, 218(2):115-124.
[24] Yin H, Price F, Rudnicki M A. Satellite cells and the muscle stem cell niche. Physiol Rev, 2013, 93(1):23-67.
[25] Laziz I, Ferry A, Armand A S, et al. Eccentric stimulation reveals an involvement of FGF6 in muscle resistance to mechanical stress. Eur J Appl Physiol, 2011, 111(7):1507-1515.
[26] Zammit P S, Partridge T A, Yablonka-Reuveni Z. The skeletal muscle satellite cell:the stem cell that came in from the cold. J Histochem Cytochem, 2006, 54(11):1177-1191.
[27] 高瞻, 来丹丹, 张敏, 等. Pax-8基因在大鼠心肌细胞凋亡中的作用. 解放军医学杂志, 2009, 34(9):1082-1084. Gao Z, Lai D D, Zhang M, et al. The role of Pax-8 gene in apoptosis in rat myocardium. PLA Medical Journal, 2009, 34(9):1082-1084.
[28] 周希, 黄晓燕, 陈长曦, 等. Pax-8基因真核表达载体的构建及其功能的初步研究. 中国病理生理杂志, 2011, 27(3):430-436. Zhou X, Huang X Y, Chen C X, et al. Preliminary research of the construction of Pax-8 gene eukaryotic expression vector and its functions. Chinese Journal of Pathophysiology, 2011, 27(3):430-436.
[29] 林素, 黄晓燕, 王本极, 等. FGF6基因高表达对鼠心肌细胞凋亡和增殖的影响. 温州医学院学报, 2013, 43(1):9-14. Lin S, Huang X, Wang B J, et al. The effect of the overexpression of FGF6 gene on apoptosis and proliferation of rat cardiomyocytes. Journal of Wenzhou Medical College, 2013, 43(1):9-14.
[30] Jiang Y, Jahagirdar B N, Reinhardt R L, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418(6893):41-49.
[31] Grass S, Arnold H H, Braun T. Alterations in somite patterning of Myf-5-deficient mice:a possible role for FGF-4 and FGF-6. Development, 1996, 122(1):141-150.
[32] Bosetti M, Leigheb M, Brooks R A, et al. Regulation of osteoblast and osteoclast functions by FGF-6. J Cell Physiol, 2010, 225(2):466-471.
[33] Herrmann A, Haake A, Ammerpohl O, et al. Pipeline for large-scale microdroplet bisulfite PCR-based sequencing allows the tracking of hepitype evolution in tumors. PLoS One, 2011, 6(7):e21332.
[34] Ropiquet F, Giri D, Kwabi-Addo B, et al. Increased expression of fibroblast growth factor 6 in human prostatic intraepithelial neoplasia and prostate cancer. Cancer Res, 2000, 60(15):4245-4250.
[35] Penault-Llorca F, Bertucci F, Adélaïde J, et al. Expression of FGF and FGF receptor genes in human breast cancer. Int J Cancer, 1995, 61(2):170-176.
[36] Kwabi-Addo B, Ozen M, Ittmann M. The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer, 2005, 11(4):709-724.
[37] Bosetti M, Boccafoschi F, Leigheb M, et al. Chondrogenic induction of human mesenchymal stem cells using combined growth factors for cartilage tissue engineering. J Tissue Eng Regen Med, 2012, 6(3):205-213.
[38] Du W, Prochazka J, Prochazkova M, et al. Expression of FGFs during early mouse tongue development. Gene Expr Patterns, 2016, 20(2):81-87.
[39] Han D, Zhao H, Parada C, et al. A TGFβ-Smad4-Fgf6 signaling cascade controls myogenic differentiation and myoblast fusion during tongue development. Development, 2012, 139(9):1640-1650.
[1] . Selection of bFGF mimic peptide by phage display[J]. China Biotechnology, 2006, 26(05): 7-10.