Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (12): 79-85    DOI: DOI:10.13523/j.cb.20161212
    
Study of Rapid Determination for Glycerol Content by Enzyme Electrode
SI Hong-yu1,2, WANG Bing-lian3,4, LIANG Xiao-hui1,2, ZHANG Xiao-dong1,2
1. Energy Research Institute of Shandong Academy of Sciences, Jinan 250014, China;
2. Key Laboratory for Biomass Gasification Technology of Shandong Province, Jinan 250014, China;
3. Biology Institute of Shandong Academy of Sciences, Jinan, 250014, China;
4. Key Laboratory for Biosensors of Shandong Province, Jinan 250014, China
Download: HTML   PDF(649KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Glycerokinase (GK) and glycerol-3-phosphate oxidase (GPO) were immobilized to develop glycerol enzyme membrane and enzyme electrode for determination of glycerol concentration. Results showed that the higher current output for glycerol was obtained using a 1: 1 (GK: GPO) ratio for the random immobilization. The efficient two-enzymatic membrane was prepared by immobilizing GK in nuclear pore film coupled with GPO on Biodyne B. Glycerol enzyme electrodes were realized by assembling the GK-GPO membranes previously prepared. In this way, the optimum pH was 7.0, and the fit range of temperature was 28~32℃. In the best experimental conditions, the linear scope was 0.05~9.00 g/L with excellent linearity and high stability. The recovery was 98.4%~102.4%, and its relative standard deviation (RSD) was <5%. There was no significant difference (P>0.05) in measurement results among glycerol enzyme electrode, Periodate oxidation method and HPLC.



Key wordsGlycerol      Enzyme immobilization      Enzyme electrode     
Received: 04 August 2016      Published: 25 December 2016
ZTFLH:  Q819  
Cite this article:

SI Hong-yu, WANG Bing-lian, LIANG Xiao-hui, ZHANG Xiao-dong. Study of Rapid Determination for Glycerol Content by Enzyme Electrode. China Biotechnology, 2016, 36(12): 79-85.

URL:

https://manu60.magtech.com.cn/biotech/DOI:10.13523/j.cb.20161212     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I12/79

[1] 张树军,杨磊,黄瑾. 巴斯德毕赤酵母表达系统的研究进展.农垦医学, 2007,3:231-233. Zhang S J, Yang L, Huang J. Research progress of Pichia pastoris expression system of Pasteur, Journal of Nongken Medicine, 2007,3:231-233.
[2] Thorpe E D, Anjou M C, Daugulis A J. Sorbitol as a non-repressing carbon source for Fed-batch fermentation of recombinant Pichia pastoris. Biotechnology Letters, 1999, 21:669-672.
[3] Li Z J, Xiong F, Lin Q S, et al. Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expression and Purification, 2001, 21:438-455.
[4] Chen C C, Wu P H, Huang C T, et al. A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme Microbial. Technology, 2004, 35(4):315-320.
[5] 汪多仁.发酵甘油的研发与应用进展.发酵科技通讯,2010,39(2):45-49. Wang D R. Progress in research and application of glycerol fermentation. Fermentation Technology Communication, 2010,39(2):45-49.
[6] 郭萍梅,黄庆德.生物柴油中游离甘油和总甘油测定方法研究.粮食与油脂,2003, 8:41-42. Guo P M, Huang Q D. Study on analytical method of free glycerin and total glycerin in bio-diesel, Journal Cereal Oil, 2003, 8:41-42.
[7] Meier D, Oasmaa A, Peacocke G V. Properties of fast pyrolysis liquids:status of test methods.In:Bridgwate A V, Boocock D G.Developments in Thermochemical Biomass Conversion. Chapman & Hall in London:CPL Press for Aston University, 1999.66-101.
[8] Ruoff K, Bogdanov S. Authenticity of honey and other bee products. Apiacta, 2004, 38(38):317-327.
[9] 李丹,周明辉,刘莹峰,等.气相色谱法测定粗甘油中的游离甘油含量,分析测试学报,2011, 30(9):1055-1058. Li D, Zhou M H, Liu Y F, et al. Determination of free glycerol in crude glycerine by gas chromatography. Journal of Instrumental Analysis, 2011, 30(9):1055-1058.
[10] 陈菁, 陈建华, 周怡雯, 等. 高效液相色谱法检测发酵液中二羟基丙酮和甘油的含量. 中国生化药物杂志, 2007,3:170-172. Chen J, Chen J H, Zhou Y W, et al, Quantitative determination of dihydroxyacetone and glycerol in the fermentation broth by HPLC. Chinese Journal of Biochemical Pharmaceutics, 2007,3:170-172.
[11] 郭兑山, 潘莉莉, 李强. 甘油激酶偶联法测定解冻红细胞的甘油含量. 中国输血杂志, 2002,15(5):344-345. Guo D S, Pan L L, Li Q. Determination of glycerol content in frozen thawed red blood cells by glycerol kinase coupled method. China Journal Blood Transfusion, 2002,15(5):344-345.
[12] Mehmet I, Michael M M. Non-repressing carbon sources for alcohol oxidase (Aox1) promoter of Pichia pastoris. Journal of Bioscience Bioengineering, 2001, 92(6):585-589.
[13] Xie J L, Zhou Q W, Du P, et al. Use of different carbon sources in cultivation of recombinant Pichia pastoris for angiostatin production. Enzyme Microbial Technol, 2005, 36(2):210-216.
[14] 冷鹏,郑彦,李其云. 纳米金-生物酶膜在葡萄糖生物传感器上的应用. 化学分析计量, 2005, 14(5):46-48. Leng P, Zheng Y, Li Q Y. Application of nanogold-biological enzyme film in the glucose biosensor. Chemical Analysis Meterage, 2005, 14(5):46-48.
[15] Mascini M, Iannello M, Palleschi G. Enzyme electrodes with improved mechanical and analytical characteristics obtained by binding enzymes to nylon nets. Analytica Chimica Acta, 1983,146:135-148.
[16] Messia M C, Compagnone, D, Esti M, et al. A bienzyme electrode probe for malate. Analytical Chemistry, 1996, 68(2):360-365.

[1] Zhi-qiang ZHAO,Tamekou Stephen LACMATA,Mo XIAN,Xiu-tao LIU,Xin-jun FENG,Guang ZHAO. Biosynthesis of Poly (3-hydroxypropionate-co-lactate) from Glycerol by Engineered Escherichia coli[J]. China Biotechnology, 2018, 38(2): 46-53.
[2] ZHAN Chun-jun, LI Xiang, LIU Guo-qiang, LIU Xiu-xia, YANG Yan-kun, BAI Zhong-hu. Identification of Glycerol Transporter in Pichia pastoris and Function Research[J]. China Biotechnology, 2017, 37(7): 48-55.
[3] DOU Yi-han, LI Ying, ZHAO Peng, FAN Ru-ting, TIAN Ping-fang. Metabolic Engineering of Klebsiella pneumoniae for the Production of Poly(3-Hydroxypropionate) from Glycerol[J]. China Biotechnology, 2017, 37(6): 86-92.
[4] ZHANG Zhen-yang, YANG Yan-kun, ZHAN Chun-jun, LI Xiang, LIU Xiu-xia, BAI Zhong-hu. Pichia pastoris X-33 ΔGT2 Release the Glycerol Repression on AOX1 and Ef-ficiently Express Heterologous Proteins[J]. China Biotechnology, 2017, 37(1): 38-45.
[5] WANG Zhen-wei, LI Gang-rui, LI Lin-li, WANG Shuai-kun, MENG Yan-fa. Studies on Purification and Properties of Rabbit Muscle Glycerol 3-Phosphate Dehydrogenase[J]. China Biotechnology, 2013, 33(2): 70-76.
[6] JIANG Hui-hui, LI Feng-gong, LU Yi, RAO Zhi-ming. Functional Analysis of Three Promoters from Yeast in Pichia pastoris[J]. China Biotechnology, 2011, 31(5): 60-68.
[7] QUAN Guo-yan, FANG Hui-ying, ZHUGE Bin, ZHANG Bo, YAO Jia-jia, ZHUGE Jian. Glycerol Dehydratase-reactivating Factor Increasing the Recombinant Escherichia coli Strains' 3-Hydroxypropinic Acid Synthesis Capability[J]. China Biotechnology, 2011, 31(06): 75-80.
[8] . Functional Analysis of Three Promoters from Yeast In Pichia pastoris[J]. China Biotechnology, 2011, 31(05): 0-0.
[9] ZHENG Hui, LI Qiu-Shun, GAO An-Heng, ZHANG Li-Qun, MA Yao-Hong, SHI Jian-Guo. Key Technologies and Progress of Amperometric Biosensors Based on Dehydrogenases[J]. China Biotechnology, 2010, 30(09): 118-123.
[10] CHEN Xian-Zhong, WANG Zheng-Xiang, CHU Ge-Jian. Progress in Glycerol Metabolism and its Physiological Function in Yeast Cells[J]. China Biotechnology, 2010, 30(05): 140-148.
[11] XIE Chao- Fang-Hui-Yang- Chu-Ge-Bin- Chu-Ge-Jian. Effect of Osmotic Pressure on Glycerol Production and Intracellular Phosphorus Accumulation by Candida glycerinogenes[J]. China Biotechnology, 2009, 29(04): 61-66.
[12] QI Xianghui Tian LIANG. Molecular Cloning, Co-expression and Characterization of dhaF and dhaG Genes Encoding Glycerol Dehydratase Reactivating Factor of Citrobacter freundii[J]. China Biotechnology, 2009, 29(01): 39-43.
[13] WANG Jun-Jie . Research in extraction of GPDH with ultrasonic from tobacco leaf[J]. China Biotechnology, 2008, 28(8): 74-77.
[14] . Construction of dhaBCE and yqhD co-expression vector and its biotransformation of glycerol[J]. China Biotechnology, 2008, 28(5): 46-51.
[15] . Effect of dissolved oxygen on glycerol production by Candida glycerinogenes[J]. China Biotechnology, 2008, 28(5): 65-70.