Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (12): 72-78    DOI: DOI:10.13523/j.cb.20161211
    
Analysis on and Construction of the VC One Step Fermentation of Three Strains
ZHAI Bing-bing, DONG Xiu-tao, DING Ming-zhu, YUAN Ying-jin
School of Chemical Engineering, Key Laboratory of Systems Bioengineering(Ministry of Education), Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
Download: HTML   PDF(627KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The aim is to analyze the vitamin C one-step fermentation process, and construct one step fermentation system including three strains of K. vulgare, G. oxydans and B. endophyticus. It was found that B. endophyticus could promote the growth and 2-KGA production of K. vulgare. They could grow fast under D-sorbitol, and 10 hours later of the fermentation process, B. endophyticus could consume D-sorbitol constantly. In the 5L fermenter, when the temperature was 30℃, stir speed was 600r/min, and the ventilation was 1.5vvm, the conversion rate of one step fementation of K. vulgare, G. oxydans and B. endophyticus was higher. In the fed-batch fermentation process, the mass conversion rate reached 81.89%, and in the batch fermentation process, the mass conversion rate reached 87.90%, it means the production process was optimized futher.



Key wordsGluconobacter oxydans      One step fermentation of three strains      B. endophyticus      Ketogulonicigenium vulgare     
Received: 03 May 2016      Published: 25 December 2016
ZTFLH:  TQ466.3  
Cite this article:

ZHAI Bing-bing, DONG Xiu-tao, DING Ming-zhu, YUAN Ying-jin. Analysis on and Construction of the VC One Step Fermentation of Three Strains. China Biotechnology, 2016, 36(12): 72-78.

URL:

https://manu60.magtech.com.cn/biotech/DOI:10.13523/j.cb.20161211     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I12/72

[1] Chen S, Roffey D M, Dion C A, et al. Effect of perioperative vitamin C supplementation on postoperative pain and the incidence of chronic regional pain syndrome:a systematic review and meta-analysis. The Clinical Journal of Pain, 2016, 32(2):179-185.
[2] Pappenberger G, Hohmann H P. Direct Microbial Routes to Vitamin C Production. Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants, Wiley-VCH Vevlag GmbH & Co.kGaA,2016.
[3] 尹光琳,魏东芝,袁渭康.维生素C二步发酵过程动力学模型的研究.生物工程学,1992,8(3):277-279. Yin G L, Wei D Z, Yuan W K. Study on the kinetic model of vitamin C two step fermentation. Chinese Journal of Biotechnology, 1992, 8(3):277-279.
[4] Jia N, Du J, Ding M Z, et al. Genome sequence of Bacillus endophyticus and analysis of its companion mechanism in the Ketogulonigenium vulgare-Bacillus Strain consortium. PloS One, 2015, 10(8):e0135104.
[5] Ameyama M, Matsushita K, Ohno Y, et al. Existence of a novel prosthetic group, PQQ, in mebrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria. FEBS Letters, 1981, 130(2):179-183.
[6] Du J, Bai W, Song H, et al. Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-l-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium. Metabolic Engineering, 2013, 19:50-56.
[7] Wang P, Xia Y, Li J, et al. Overexpression of pyrroloquinoline quinone biosynthetic genes affects l-sorbose production in Gluconobacter oxydans WSH-003. Biochemical Engineering Journal, 2016, 112:70-77.
[8] Hoshino T, Shinjoh M, Toepfer C, et al. Vitamin C production in a microorganism, gluconobacter:U.S. Patent 9,279,138. 2016-3-8.
[9] Miyazaki T, Tomiyama N, Shinjoh M, et al. Molecular cloning and functional expression of d-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255, which requires pyrroloquinoline quinone and hydrophobic…. Bioscience, Biotechnology, and Biochemistry, 2002, 66(2):262-270.
[10] Zou W, Liu L, Zhang J, et al. Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. Journal of Biotechnology, 2012, 161(1):42-48.
[11] Jia N, Ding M Z, Du J, et al. Insights into mutualism mechanism and versatile metabolism of Ketogulonicigenium vulgare Hbe602 based on comparative genomics and metabolomics studies. Scientific Reports, 2016, 6:23068.
[12] Gao L, Hu Y, Liu J, et al. Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-l-gulonic acid from d-sorbitol. Metabolic Engineering, 2014, 24:30-37.
[13] Wang E X, Ding M Z, Ma Q, et al. Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation. Microbial Cell Factories, 2016, 15(1):1.
[14] Zhu Y, Liu J, Liu J, et al. A high throughput method to screen companion bacterium for 2-keto-L-gulonic acid biosynthesis by co-culturing Ketogulonicigenium vulgare. Process Biochemistry, 2012, 47(9):1428-1432.
[15] Yang Y, Gao M, Yu X, et al. Optimization of medium composition for two-step fermentation of vitamin C based on artificial neural network-genetic algorithm techniques. Biotechnology & Biotechnological Equipment, 2015, 29(6):1128-1134.
[16] Wang T, Sun J, Yuan J. Modeling and parameters identification of 2-keto-l-gulonic acid fed-batch fermentation. Bioprocess and Biosystems Engineering, 2015, 38(4):605-614.
[17] Zhang Z, Sun J, Yuan J. Investigating the interaction between Gluconobacter oxydans and Bacillus megaterium for 2-keto-L-gulonic acid biosynthesis in the two-step vitamin C fermentation. Journal of Shanghai Jiaotong University (Science), 2015, 20:281-285.
[18] Zhu Y, Liu J, Du G, et al. Sporulation and spore stability of Bacillus megaterium enhance Ketogulonigenium vulgare propagation and 2-keto-L-gulonic acid biosynthesis. Bioresource Technology, 2012, 107:399-404.
[19] Liu J, Hu S, Chang F, et al. Effects of the accompany strain on the fermentation performance of Ketogulonigenium vulgare. Journal of Taizhou Polytechnic College, 2013, 2:027.
[20] Anderson S, Marks C B, Lazarus R, et al. Production of 2-keto-L-gulonate, an intermediate in L-ascorbate synthesis, by a genetically modffied Erwinia herbicola. Science, 1985, 230(4722):144-149.
[21] Han X, Xiong X, Jiang D, et al. Crystal structure of L-sorbose dehydrogenase, a pyrroloquinoline quinone-dependent enzyme with homodimeric assembly, from Ketogulonicigenium vulgare. Biotechnology Letters, 2014, 36(5):1001-1008.

[1] ZHAI Bing-bing, MA Qian, DING Ming-zhu, YUANG Ying-jin. Study on the VC One Step Fermentation Under Glutathione[J]. China Biotechnology, 2016, 36(8): 38-45.
[2] DAI Xiao-yan, SHEN Xiao-bo, ZHU Hong-yang, XU Hong. Short-chain D-arabitol Dehydrogenase from Gluconobacter oxydans NH-10[J]. China Biotechnology, 2010, 30(11): 39-43.