Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (12): 59-65    DOI: DOI:10.13523/j.cb.20161209
    
Utilization of a Marine Microbial Esterase in the Enantio-selective Preparation of (R)-Ethyl 2-chloropropionate
CAO Ying-ying1,2, DENG Dun1,2, XIA Fang-liang4, SUN Ai-jun1,2, ZHANG Yun1,2, HU Yun-feng1,2,3
1. Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
2. Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
3. South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China;
4. Binzhou Food and Drug Inspection and Testing Center, Binzhou 256618, China
Download: HTML   PDF(590KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The esterase EST12-7 was identified from the deep sea of the South China Sea and was used to prepared (R)-ethyl 2-chloropropionate efficiently through asymmetric hydrolysis reactions. The effects of temperature, pH, substrate concentration, organic solvents and reaction time on the preparation of (R)-ethyl 2-chloropropinate catalyzed by EST12-7 were investigated. The results identified that the optimal working conditions for the preparation of (R)-ethyl 2-chloropropinate using deep-sea microbial esterase EST12-7 were that: 13.8 μg/ml esterase EST12-7, 50 mmol/L (±)-ethyl 2-chloropropinate, 2% n-decyl alcohol, pH 8.5, 30℃, 0.05 mol/L Tris-HCl, 60 min. Under optimal conditions, the conversion of (±)-ethyl 2-chloropropinate could reach 49% and the optical purity (e.e.s) of product (R)-ethyl 2-chloropropinate could reach 98%. After comparing the kinetic resolutions of racemic methyl 2-chloropropionate and racemic ethyl 2-chloropropinate by esterase EST12-7, the chain length of the 2-chloropropionate esters could greatly affect the kinetic resolutions catalyzed by esterase EST12-7.



Key words(R)-ethyl 2-chloropropinate      High enantio-selectivity      Deep-sea microorganisms      Esterase     
Received: 16 June 2016      Published: 25 December 2016
ZTFLH:  Q819  
Cite this article:

CAO Ying-ying, DENG Dun, XIA Fang-liang, SUN Ai-jun, ZHANG Yun, HU Yun-feng. Utilization of a Marine Microbial Esterase in the Enantio-selective Preparation of (R)-Ethyl 2-chloropropionate. China Biotechnology, 2016, 36(12): 59-65.

URL:

https://manu60.magtech.com.cn/biotech/DOI:10.13523/j.cb.20161209     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I12/59

[1] 文辉, 王敏, 边庆花. 光学纯2_氯丙酸及其酯的合成与在手性农药中的应用.农药, 2004, 43(8):363-366. Wen H, Wang M, Bian Q H. Synthesis and application of optical purity 2-chloropropionic acid in chiral pesticides. Chinese Journal of Pesiticides, 2004, 43(8):363-366.
[2] 施介华金迪, 李祥, 等.2-氯丙酸及其酯的拆分研究进展.浙江工业大学学报, 2006, 34(5):502-507. Shi J H, Jin D, Li X, et al. Research progress on the resolution of 2-chloropropionic acid and ester. Journal of Zhejiang University of Technology, 2006, 34(5):502-507.
[3] 戴荣继, 佟斌, 孟薇薇, 等.膜拆分法分离制备手性药物.膜科学与技术, 2006, 26(3):84-89. Dai R J, Tong B, Meng W W,et al. Membrane technology for the separation of racemic drugs. Membrane Science and Technology, 2006, 26(3):84-89.
[4] 谢华松, 丘明建, 刘文龙,等. 色谱法在手性药物拆分中的应用.亚太传统医药, 2011, 7(4):158-160. Xie H S, Qiu M J, Liu W L, et al. Application of chromatography in the resolution of chiral drug. Asia-Pacific Traditional Medicine, 2011, 7(4):158-160.
[5] 刘凤艳, 庞小琳, 郑轶群, 等.手性物质及其拆分方法. 辽宁化工, 2007,36(11):784-785. Liu F Y, Pang X L, Zheng Y Q, et al. Chiral compounds and the methods of chiral separation. Liaoning Chemical Industry, 2007, 36(11):784-785.
[6] 杨千姣, 曲蕾, 吴族悌, 等. 手性拆分技术及其在手性药物合成中的应用新进展. 中国药物化学杂志, 2009,19(6):429-435. Yang Q J, Qu L, Wu Z T, et al. Application progress of novel optical resolution technologies in the chiral drugs. Chinese Journal of Medicinal Chemistry, 2009, 19(6):429-435.
[7] 韩祝平,叶鹏,王新平, 等.脂肪酶的固定化及其手性拆分的研究进展. 应用化工, 2011, 40(11):1823-1827. Han Z P, Ye P, Wang X P, et al. Lipase immobilization and research progress in chiral resolution. Applied Chemical Industry, 2011, 40(11):1823-1827.
[8] Vilas Athawale N M, Manoj A. Enzymatic synthesis of chiral menthyl methacrylate monomer by Pseudomonas cepacia lipase catalysed resolution of (±)-menthol. Journal of Molecular Catalysis B:Enzymatic, 2001, 16(3):169-173.
[9] Antoine P L, Overbeeke J A. Enantioselectivity of Candida rugosa lipase in the hydrolysis of 2-chloropropionic acid methyl ester. Journal of Molecular Catalysis B:Enzymatic, 2003, 21:89-91.
[10] Atsushi Kurata T K, Harumi K A, Nobuyoshi Esakia. Asymmetric reduction of 2-chloroacrylic acid to (S)-2-chloropropionic acid by a novel reductase from Burkholderia sp. WS. Tetrahedron:Asymmetry, 2004,15:2837-2839.
[11] 施介华, 蔡栋材,叶蒙. 固载化猪胰脂肪酶的制备及其在2-氯丙酸甲酯水解中应用.浙江工业大学学报, 2009, 37(1):32-35. Shi J H, Cai D C, Ye M. Immobilization of porcine pancreas lipase and its application in hydrolysis of methyl 2-chloropropionate. Journal of Zhejiang University of Technology, 2009, 37(1):32-35.
[12] 曹莹莹, 邓盾, 张云, 等. 南海深海新颖低温脂肪酶的克隆、表达及酶学性质鉴定.中国生物工程杂志.2016, 36(3):43-52. Cao Y Y, Deng D, Zhang Y, et al. Cloning, expression and characterization of a novel Psychrophile lipase from the deep sea of the south China Sea. China Biotechnology, 2016, 36(3):43-52.
[13] Chen C S, Yoshinori F, Gary G, et al. Quantitative analyses of biochemical kinetic resolutions of enantiomers. Journal of the American Chemical Society, 1982, 104:1294-1299.
[14] Antoine Overbeeke P L. Enantioselectivity of Candida rugosa lipase in the hydrolysis of 2-chloropropionic acid methyl ester. Journal of Molecular Catalysis B:Enzymatic, 2003, 21:89-91.
[15] Erland Holmberg I, Erik Hedenstriim M H, Per B, et al. Reaction conditions for the resolution of 2-methylalkanoic acids in esterification and hydrolysis with lipase from Candida cylindracea. Applied Microbiology and Biotechnology, 1991, 35:572-578.
[16] Cao Y Y, Dun D, Aijun Sun, et al. Functional characterization of a novel marine microbial esterase and its utilization in the enantioselective preparation of (R)-methyl 2-chloropropionate. Applied Biochemistry and Biotrchnology, 20 April 2016. DOI:10.1007/s12010-016-2094-2098.

[1] LI Zhi-gang,GU Yang,TAN Hai,ZHANG Zhong-hua,CHANG Jing-ling. Enhanced Cyclic Adenosine Monophosphate Fermentation Production by Aminophylline and Citrate Coupling Addition[J]. China Biotechnology, 2021, 41(7): 50-57.
[2] MA Cui-ping,LIU Duo-duo,PAN Bing-ju,SHEN Hui-tao,SONG Ya-jian. Cloning and Characterization of Acetylesterase AesA Derived from Mannan Utilization Gene Cluster of Bacillus sp. N16-5[J]. China Biotechnology, 2020, 40(3): 65-71.
[3] WU Hong-li, XUE Yong, LIU Jian, GAN Li-hui, LONG Min-nan. Research Progress of Acetyl Xylan Esterase[J]. China Biotechnology, 2016, 36(3): 102-110.
[4] GONG Yan-hui, MA San-mei, ZHANG Yun, WANG Yong-fei, HU Yun-feng. Functional Characterization of a Novel Microbial Psychrophilic Lipase and Its Utilization in Stereo-Selective Biocatalysis[J]. China Biotechnology, 2016, 36(10): 35-44.
[5] LUO Man-jie, XIE Yuan, QIAN Zhi-gang, FENG Yan, YANG Guang-yu. High-level Heterogenous Expression of a Hyperthermophilic Esterase in Different Hosts[J]. China Biotechnology, 2014, 34(12): 36-44.
[6] . Screening, Cloning and Expression of Esterase Gene for Enantioselective Resolution of (R)-ketoprofen[J]. China Biotechnology, 2010, 30(10): 0-0.
[7] LIU Rui-en, ZHAO Yun-ying, SHI Fei-fei, ZHAO Yu-hong, XU Li-juan, ZHANG Jin-hong. Screening, Cloning and Expression of Esterase Gene for Enantioselective Resolution of (R)-ketoprofen[J]. China Biotechnology, 2010, 30(10): 1-6.
[8] . Organophosphorus Pesticides (Ops) Operate to Arabidopsis Thaliana by the Different Expression Protein and Inhibiting the Activity of Esterase Isoenzymes[J]. China Biotechnology, 2010, 30(07): 0-0.
[9] Yao-Jun WANG Gao Qiang Mi SUN Jian-Hua HAO . Studies on characterization and applications of carboxylesterases from hyperthermophiles[J]. China Biotechnology, 2008, 28(3): 118-122.
[10] . Cloning and expression of esterase gene to enantioselective resolution of (S)-ketoprofen in NK13[J]. China Biotechnology, 2008, 28(2): 32-36.