Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (9): 113-121    DOI: 10.13523/j.cb.20140917
    
Recent Trends in Discovery and Protein Engineering of Biocatalysts
TANG Cun-duo1, SHI Hong-ling1, TANG Qing-hai1, JIAO Zhu-jing1, KAN Yun-chao1, WU Min-chen2, LI Jian-fang3
1. China-UK-NYNU-RRes Joint Laboratory, Nanyang Normal University, Nanyang 473061, China;
2. Wuxi Medical School, Jiangnan University, Wuxi 214122, China;
3. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(1273KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Biocatalysis is the process of applying enzymes or biological organisms in useful chemical conversion. In the context of concerns about the environmental aspects of the traditional chemical catalysis, biocatalysis provides an attractive alternative. In the past few decades, with a great progress on the study of biocatalysts, there will relevantly be a development wave on biocatalysis. So, the discovery and protein engineering of biocatalysts are becoming a hotspot in current researches. The emergence of the metagenomic library technology overcomes the barriers that many microorganism can not be cultured, hence more and more potential biocatalysts can be gained from natural resources. Owing to the development of the molecular modification technologies based on the rational design, rapid and efficient protein engineering of potential biocatalysts can be done to meet the need of industrial production. With the progress of the discovery and protein engineering method of biocatalysts, more and more excellent biocatalysts have been widely used, and biocatalysis have further application in the industrial production. The latest progress on the discovery and protein engineering of biocatalysts based on the research work were summarized to provide the theoretical foundation for getting more excellent biocatalysts which can be applied on industrial scale.



Key wordsBiocatalysts      Metagenomic library      Genome mining      Molecular modification      in silico design     
Received: 03 July 2014      Published: 25 September 2014
ZTFLH:  Q78  
Cite this article:

TANG Cun-duo, SHI Hong-ling, TANG Qing-hai, JIAO Zhu-jing, KAN Yun-chao, WU Min-chen, LI Jian-fang. Recent Trends in Discovery and Protein Engineering of Biocatalysts. China Biotechnology, 2014, 34(9): 113-121.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140917     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I9/113


[1] Wang M, Si T, Zhao H. Biocatalyst development by directed evolution. Bioresource Technol, 2012, 115(0):117-125.

[2] Bornscheuer U T, Huisman G W, Kazlauskas R J, et al. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397):185-194.

[3] Gong J S, Lu Z M, Li H, et al. Metagenomic technology and genome mining: emerging areas for exploring novel nitrilases. Appl Microbiol Biot, 2013, 97(15):6603-6611.

[4] Bottcher D, Bornscheuer U T. Protein engineering of microbial enzymes. Curr Opin Microbiol, 2010, 13(3):274-282.

[5] Behrens G A, Hummel A, Padhi S K, et al. Discovery and protein engineering of biocatalysts for organic synthesis. Adv Synth Catal, 2011, 353(13):2191-2215.

[6] Davids T, Schmidt M, Bottcher D, et al. Strategies for the discovery and engineering of enzymes for biocatalysis. Curr Opin Chem Biol, 2013, 17(2):215-220.

[7] Lee H S, Kwon K K, Kang S G, et al. Approaches for novel enzyme discovery from marine environments. Curr Opin Biotech, 2010, 21(3):353-357.

[8] Handelsman J, Rondon M R, Brady S F, et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol, 1998, 5(10):R245-R249.

[9] Craig J W, Chang F Y, Kim J H, et al. Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl Environ Microbiol, 2010, 76(5):1633-1641.

[10] Daniel R. The metagenomics of soil. Nat Rev Micro, 2005, 3(6):470-478.

[11] Lorenz P, Eck J. Metagenomics and industrial applications. Nat Rev Micro, 2005, 3(6):510-516.

[12] 赵圣国, 王加启, 刘开朗, 等. 奶牛瘤胃微生物元基因组文库中脂肪酶的筛选与酶学性质. 生物工程学报, 2009, 25(6):869-874. Zhao SH G, Wang J Q, Liu K L, et al. Screening and characterization of lipase from a metagenome library of dairy rumen microflora. Chin J Biotech, 2009, 25(6): 869-874.

[13] Du J, Li L, Ding X, et al. Isolation and characterization of a novel cyanophycin synthetase from a deep-sea sediment metagenomic library. Appl Microbiol Biotechnol, 2013, 97(19):8619-8628.

[14] Zhang L, Fan Y, Zheng H, et al. Isolation and characterization of a novel endoglucanase from a Bursaphelenchus xylophilus metagenomic library. PLoS ONE, 2013, 8(12):e82437.

[15] Shao H, Xu L, Yan Y. Isolation and characterization of a thermostable esterase from a metagenomic library. J Ind Microbiol Biotechnol, 2013, 40(11):1211-1222.

[16] Rashamuse K, Ronneburg T, Sanyika W, et al. Metagenomic mining of feruloyl esterases from termite enteric flora. Appl Microbiol Biotechnol, 2014, 98(2):727-737.

[17] Wang F, Li F, Chen G, et al. Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol Res, 2009, 164(6):650-657.

[18] Zhao S, Wang J, Bu D, et al. Novel glycoside hydrolases identified by screening a Chinese Holstein dairy cow rumen-derived metagenome library. Appl Environ Microbiol, 2010, 76(19):6701-6705.

[19] Nimchua T. Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J Microbiol Biotechn, 2012, 22(4):462-469.

[20] Lee C, Kibblewhite R, Wagschal K, et al. Isolation of α-glucuronidase enzyme from a rumen metagenomic library. Protein J, 2012, 31(3):206-211.

[21] Walter J, Mangold M, Tannock GW. Construction, analysis, and beta-glucanase screening of a bacterial artificial chromosome library from the large-bowel microbiota of mice. Appl Environ Microbiol, 2005, 71(5):2347-2354.

[22] Challis G L. Genome mining for novel natural product discovery. J Med Chem, 2008, 51(9):2618-2628.

[23] Furuya T, Kino K. Genome mining approach for the discovery of novel cytochrome P450 biocatalysts. Appl Microbiol Biotechnol, 2010, 86(4):991-1002.

[24] Zhu D, Mukherjee C, Biehl E R, et al. Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicum USDA110 by rational genome mining. J Biotechnol, 2007, 129(4):645-650.

[25] Barriuso J, Prieto A, Martínez M J. Fungal genomes mining to discover novel sterol esterases and lipases as catalysts. BMC Genomics, 2013, 14:712.

[26] Fraaije M, Wu J, Heuts D H M, et al. Discovery of a thermostable Baeyer-Villiger monooxygenase by genome mining. Appl Microbiol Biotechnol, 2005, 66(4):393-400.

[27] Tang C D, Guo J, Wu M C, et al. Cloning and bioinformatics analysis of a novel acidophilic β-mannanase gene, Auman5A, from Aspergillus usamii YL-01-78. World J Microb Biot, 2011, 27(12):2921-2929.

[28] Shi H L, Yin X, Wu M C, et al. Cloning and bioinformatics analysis of an endoglucanase gene (Aucel12A) from Aspergillus usamii and its functional expression in Pichia pastoris. J Ind Microbiol Biotechnol, 2012, 39(2):347-357.

[29] Wang J Q, Zhang H M, Wu M C, et al. Cloning and sequence analysis of a novel xylanase gene, Auxyn10A, from Aspergillus usamii. Biotechnol Lett, 2011, 33(5):1029-1038.

[30] Zhao S G, Wu M C, Tang C D, et al. Cloning and bioinformatic analysis of an acidophilic β-mannanase gene, Anman5A, from Aspergillus niger LW-1. Appl Biochem Micro, 2012, 48(5):473-481.

[31] 郜赵伟, 张宇宏, 张伟. 微生物酶分子改造研究进展. 中国生物工程杂志, 2010, 30(1):98-103. Gao ZH W, Zhang Y H, Zhang W. Advances in molecular modification of microbial enzymes. China Biotechnology, 2010, 30(1): 98-103.

[32] 孔祥禄. 计算机辅助耐热性研究及分子设计. 广州: 华南理工大学, 2010. Kong X L. Computer-assisted Research on Heat-tolerance of Enzymes and Molecular Design. Guangzhou: South China University of Technology, 2010.

[33] Kim M S, Lei X. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Appl Microbiol Biotechnol, 2008, 79(1):69-75.

[34] 孔荣, 钮利喜, 袁静明. 易错PCR法定向进化D-海因酶的初步研究. 山西大学学报(自然科学版), 2006, 29:425-427. Kong R, Niu L X, Yuan J M. A preliminary study on the directed evolution of D-hydantoinase by error-prone PCR. Journal of Shanxi University (Nat Sci Ed), 2006, 29:425-427.

[35] Ang E L, Obbard J P, Zhao H. Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis. FEBS J, 2007, 274(4):928-939.

[36] Gabor E M, Janssen D B. Increasing the synthetic performance of penicillin acylase PAS2 by structure-inspired semi-random mutagenesis. Protein Eng Des Sel, 2004, 17(7):571-579.

[37] Cho C M, Mulchandani A, Chen W. Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl Environ Microbiol, 2004, 70(8):4681-4685.

[38] Shi C, Lu X, Ma C, et al. Enhancing the thermostability of a novel β-agarase AgaB through directed evolution. Appl Biochem Biotech, 2008, 151(1):51-59.

[39] Davoodi J, Wakarchuk W W, Carey P R, et al. Mechanism of stabilization of Bacillus circulans xylanase upon the introduction of disulfide bonds. Biophys Chem, 2007, 125(2-3):453-461.

[40] Fenel F, Leisola M, Jnis J, et al. A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-β-xylanase II. J Biotechnol, 2004, 108(2):137-143.

[41] Huang Y H, Huang C T, Hseu R S. Effects of dockerin domains on Neocallimastix frontalis xylanases. FEMS Microbiol Lett, 2005, 243(2):455-460.

[42] Sokkar P, Mohandass S, Ramachandran M. Multiple templates-based homology modeling enhances structure quality of AT1 receptor: validation by molecular dynamics and antagonist docking. J Mol Model, 2011, 17(7):1565-1577.

[43] Gao S J, Wang J Q, Wu M C, et al. Engineering hyperthermostability into a mesophilic family 11 xylanase from Aspergillus oryzae by in silico design of N-terminus substitution. Biotechnol Bioeng, 2013, 110(4):1028-1038.

[44] 田健. 计算机辅助分子设计提高蛋白质热稳定性的研究. 北京: 中国农业科学院, 2011. Tian J. Improvement of the Protein Thermal Stability by the Computer Aided Molecular Design. Beijing: Chinese Academy of Argicultural Sciences, 2011.

[45] Le Q A, Joo J C, Yoo Y J, et al. Development of thermostable Candida antarctica lipase B through novel in silico design of disulfide bridge. Biotechnol Bioeng, 2012, 109(4):867-876.

[46] 史红玲. 米曲霉木聚糖酶基因的克隆表达及耐热性改造. 无锡: 江南大学, 2012. Shi H L. Cloning, Expression of the Xylanase Gene from Aspergillus oryzae and its Thermostability Enhancement. Wuxi: Jiangnan University, 2012.

[47] Timmers L F, Ducati R G, Sanchez-Quitian Z A, et al. Combining molecular dynamics and docking simulations of the cytidine deaminase from Mycobacterium tuberculosis H37Rv. J Mol Model, 2012, 18(2):467-479.

[48] Christelle B, Eduardo Bde O, Latifa C, et al. Combined docking and molecular dynamics simulations to enlighten the capacity of Pseudomonas cepacia and Candida antarctica lipases to catalyze quercetin acetylation. J Biotechnol, 2011, 156(3):203-210.

[49] Tang C D, Li J F, Wei X H, et al. Fusing a carbohydrate-binding module into the Aspergillus usamii beta-mannanase to improve its thermostability and cellulose-binding capacity by in silico design. PloS One, 2013, 8(5):e64766.

[50] Li J F, Wei X H, Tang C D, et al. Directed modification of the Aspergillus usamii beta-mannanase to improve its substrate affinity by in silico design and site-directed mutagenesis. J Ind Microbiol Biotechnol, 2014, 41(4):693-700.

[1] Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation[J]. China Biotechnology, 2019, 39(5): 96-104.
[2] Fang CHEN,Gang XU,Li-rong YANG,Jian-ping WU. Enhancing the Activity of LkTADH by Site-Directed Mutagenesis to Prepare Key Chiral Block of Statins[J]. China Biotechnology, 2018, 38(9): 59-64.
[3] Cun-duo TANG,Hong-ling SHI,Yue MA,Peng-ju DING,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Gene Mining, Expression and Characterization of Novel R-mandelate Dehydrogenases[J]. China Biotechnology, 2018, 38(2): 30-37.
[4] LI Ji-bin, CHEN Zhi, CHEN Hua-you. Research Progress on Cloning, Expression,Immobilization and Molecular Modification of Nitrilase[J]. China Biotechnology, 2017, 37(9): 141-147.
[5] Cun-duo TANG,Hong-ling SHI,Zhu-jin JIAO,Fei LIU,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Effect of Prolines in the Loop of CPC Acylase Substrate Binding Region on Its Catalytic Properties[J]. China Biotechnology, 2017, 37(12): 34-39.
[6] WEN Sai, LIU Huai-ran, HAN Xu, LI Tian, XING Xuan. Research Advances in the Design of Synthetic Antimicrobial Peptides with Enhanced Therapeutic Potentials[J]. China Biotechnology, 2016, 36(8): 89-98.
[7] MA Chen-lu, TANG Cun-duo, SHI Hong-ling, WANG Rui, YUE Chao, XIA Min, WU Min-chen, KAN Yun-chao. Semi-rational Modification of Cephalosporin C Acylase and Biosynthesis of 7-ACA[J]. China Biotechnology, 2015, 35(12): 65-71.
[8] LI Xiao-dong, YANG Na, WAN Yong-hu, WU Jia, JIA Dong-chen, QIAO Min. Cell Surface Engineering of Yeast Application in Biofuel[J]. China Biotechnology, 2012, 32(08): 107-110.
[9] CHAN Zhu-hua, LIU Yang, SU Yu-bin, SHAN Da-peng, WANG Shui-qi, ZENG Run-ying. Fermentation Conditions Optimization of Deep Sea Gene Engineering Strain LIP001 Producing Cold-adaptive Lipase[J]. China Biotechnology, 2011, 31(04): 65-70.
[10] CHENG Xiao-jie, QIU Tian-lei, WANG Min, ZHANG Shu, CAI Jin-guo, GAO Jun-lian. Screening of Microbial Community in Biogas Fermentation under Low Temperature and Construction of its Metagenome Library[J]. China Biotechnology, 2010, 30(11): 50-55.
[11] GAO Diao-Wei, ZHANG Yu-Hong, ZHANG Wei. Advances in Molecular Modification of Microbial Enzymes[J]. China Biotechnology, 2010, 30(01): 98-103.