Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (8): 105-111    DOI: 10.13523/j.cb.20140816
    
Recent Developments in Spore Surface Display of Bacillus subtilis
XIE Zhi-dan1, FAN Wen1, JIA Dong-cheng1, YANG Na1, XIA Zheng-yuan2, QIAO Min1
1. Key Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming 650091, China;
2. Yunnan Tobacco Research Institute of Agricultural Science, Kunming 650091, China
Download: HTML   PDF(570KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bacillus subtilis spore display, a technique that presents proteins or peptides on the surface of the spore of Bacillus subtilis, enables high-throughput screening and has become an essential tool in bimolecular engineering. The major advantage of spores over the other published systems is their synthesis within the cytoplasm of the bacterial cell. Therefore, any heterologous protein to be anchored on the outside does not have to cross any membrane. Furthermore,spores are extremely resistant against high temperature, irradiation and many chemicals, and can be stored for many years at room temperature. With the advantage of complete genome information and security, Bacillus subtilis spore display now is attracting more and more attention. The following describes the recent progress of surface of Bacillus subtilis in the produce of vaccines and the immobillzed enzyme, and present a brief overview about how to improve the yield of the target protein surface display.



Key wordsSurface display      Bacillus subtilis      Antigen      Anchoring protein     
Received: 23 May 2014      Published: 25 August 2014
ZTFLH:  Q819  
Cite this article:

XIE Zhi-dan, FAN Wen, JIA Dong-cheng, YANG Na, XIA Zheng-yuan, QIAO Min. Recent Developments in Spore Surface Display of Bacillus subtilis. China Biotechnology, 2014, 34(8): 105-111.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140816     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I8/105


[1] 余小霞, 田健, 伍宁丰.枯草芽胞杆菌芽胞表面展示外源蛋白的研究进展. 中国农业科技导报, 2013, 15(5):31-38. Yu X X, Tian J, Wu N F. Research progress of surface display of proteins on Bacillus subtilis spores. Review Chinese Agricultural Science and Technology, 2013, 15(5):31-38.

[2] Pan J G, Kim E J, Yun C H. Bacillus spore display. Trends Biotechnol, 2012, 30(12):610-612.

[3] Isticato R, Cangiano G, Tran H T, et al.Surface display of recombinant proteins on Bacillus subtilis spores. J Bacteriol, 2001, 183(21):6294-6301.

[4] 徐小曼, 王啸辰, 马翠卿.芽胞表面展示技术研究进展. 生物工程学报, 2010, 26(10):1404-1409. Xu X M, Wang X C, Ma C Q. Recent progress of the research on spore surface display. Journal of Biotechnology, 2012, 26(10): 1404-1409.

[5] Thompson B M, Stewart G C. Targeting of the BclA and BclB proteins to the Bacillus anthracis spore surface. Molecular Microbiology, 2008, 70(2):421-434.

[6] Kim J, Schumann W. Display of proteins on Bacillus subtilis endospores. Cellular and Molecular Life Sciences, 2009, 66(19):3217-3136.

[7] Bull A T, Goodfellow M, Slater J H. Biodiversity as a source of innovation in biotechnology. Annual Reviews in Microbiology, 1992, 46(1):219-246.

[8] Slepecky R, Leadbetter E. On the prevalence and roles of spore-forming bacteria and their spores in nature.Biochimica et Biophysica Acta, 1983, 528(3):288297.

[9] Kim J, Schumann W. Display of proteins on Bacillus subtilis endospores. Cellular and Molecular Life Sciences, 2009, 66(19):3127-3136.

[10] Isticato R, Pelosi A, Baccigalupi L, et al. CotC-CotU heterodimerization during assembly of the Bacillus subtilis spore coat. J Bacteriol, 2008, 190(4):1267-1275.

[11] Isticato R, Esposito G, Nolasco S, et al. Assembly of multiple CotC forms into the Bacillus subtilis spore coat. J Bacteriol, 2004, 186(4):1129-1135.

[12] Sacco M, Ricca E, Losick R, et al. An additional GerE controlled gene encoding an abundant spore coat protein from Bacillus subtilis. Journal of Bacteriology, 1995, 177(2):372-337.

[13] Holt S, Leadbetter E. Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bacteriological Reviews, 1969, 33(2):346.

[14] Driks A. Maximum shields: the assembly and function of the bacterial spore coat. Trends Microbiol, 2002, 10(6):251-254.

[15] Lee S Y, Choi J H, Xu Z. Microbial cell-surface display. Trends Biotechnol, 2003, 21(1):45-52.

[16] Ban J, JuneHyung, ByungGee, et al. Method for expression of proteins on spore surface. South-Korea, KR20030065534, 2003.

[17] Hinc K, Iwanicki A, Obuchowski M. New stable anchor protein and peptide linker suitable for successful spore surface display in B. subtilis. Microb Cell Fact, 2013, 12:22.

[18] 李倩, 宁德刚, 吴春笃. 以 CotX 为分子载体在枯草芽胞杆菌芽胞表面展示绿色荧光蛋白. 生物工程学报, 2010, 26(2):264-269. Li Q, Ning D G, Wu C D. Surface display of GFP using CotX as a molecular vector on Bacillus subtilis spores. Journal of Biotechnology, 2010, 26(2):264-269.

[19] 王晓阁. 枯草芽孢杆菌研究进展与展望. 中山大学研究生学刊: 自然科学与医学版, 2013, 33(3):14-23. Wang X G. Research progress of Bacillus subtilis. Journal of the Graduates Sun YAT-SEN University, 2013, 33(3):14-23.

[20] Kwon S J, Jung H X, Pan J G, Transgalactosylation in a water-solvent biphasic reaction system with β-galactosidase displayed on the surfaces of Bacillus subtilis spores. Appl Environ Microbiol, 2007, 73(7):2251-2256.

[21] Fang Y, Xu W, Wu J, et al. Enzymatic transglycosylation of PEG brushes by β-galactosidase. Chemical Communications, 2012, 48(91):11208-11210.

[22] Kim J H. Lee C S, Kim B G. Spore-displayed streptavidin: a live diagnostic tool in biotechnology. Biochemical and Biophysical Research Communications, 2005, 331(1):210-214.

[23] Uyen N Q, Hong H A, Cutting S M. Enhanced immunisation and expression strategies using bacterial spores as heat-stable vaccine delivery vehicles. Vaccine, 2007, 25(2):356-365.

[24] Duc L H, Hong H A, Fairweather N, et al. Bacterial spores as vaccine vehicles. Infection and Immunity, 2003, 71(5):2810-2818.

[25] Ciabattini A, Riccardo Parigia, Rechele Isticatob, et al. Oral priming of mice by recombinant spores of Bacillus subtilis. Vaccine, 2004, 22(31):4139-4143.

[26] Flick-Smith Helen C, Eyles A, et al. Mucosal or parenteral administration of microsphere-associated Bacillus anthracis protective antigen protects against anthrax infection in mice. Infection and Immunity, 2002, 70(4):2022-2028.

[27] Ivins B, MariaLuz Pombob, Leslie Wagnera, et al. Immunization against anthrax with Bacillus anthracis protective antigen combined with adjuvants. Infection and Immunity, 1992, 60(2):662-668.

[28] Ivins B, Pitt M L, Fellows P F, et al. Comparative efficacy of experimental anthrax vaccine candidates against inhalation anthrax in Rhesus macaques. Vaccine, 1998, 16(11):1141-1148.

[29] Negri A, Wojciech Potocki, Adam Iwanicki, et al. Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores. Journal of Medical Microbiology, 2013, 62(Pt 9):1379-1385.

[30] Kim J H, Roh C, Lee C W, et al. Bacterial surface display of GFP(uv) on bacillus subtilis spores. Journal of Microbiology and Biotechnology, 2007, 17(4):677-680.

[31] Strauss A, Götz F. In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus. Molecular Microbiology, 1996, 21(3):491-500.

[32] 郭夏丽, 狄源宁, 王岩.枯草芽孢杆菌产芽孢条件的优化. 中国土壤与肥料, 2012, 3:99-103. Guo X L, Di Y N, Wang Y. The optimization of pruduce spores of Bacillus subtilis. Chinese Soil and Fertilizer, 2012, 3:99-103

[33] 甄静, 郭直岳, 谢宝恩.枯草芽孢杆菌 XK-1 产芽孢条件的优化. 中国农学通报, 2012, 28(27):146-151. Zhen J, Guo Z Y, Xie B E. The optimization of pruduce spores of a Bacillus subtilis named XK-1. Chinese Agricultural Science Bulletin, 2012, 28(27):146-151.

[1] KANG Ke-ren,YUAN Qiang,LIANG Fei-min,WU Li-xian. Synthesis of Benzfetamine Artificial Antigen[J]. China Biotechnology, 2021, 41(7): 58-65.
[2] CHEN Chen,HU Jin-chao,CAO Shan-shan,MEN Dong. The Development of Antigen Testing for SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 119-128.
[3] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[4] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[5] XU Ying-yong. Current Status and Challenges of Gene Therapy Products[J]. China Biotechnology, 2020, 40(12): 95-103.
[6] DAO Feng-ting,YANG Lu,WANG Ya-zhe,CHANG Yan,YUAN Xiao-ying,LI Ling-di,CHEN Wen-min,LONG Ling-yu,LIU Yan-rong,QIN Ya-zhen. Characteristics and Prognostic Significance of Ki-67 Expression at diagnosis in Adult t(8;21) Acute Myeloid Leukemia[J]. China Biotechnology, 2019, 39(9): 11-18.
[7] Yu-sheng OU,Hong-jun ZHENG,Shi ZHONG,Yi LI. TAEST16001:TCR Affinity Enhanced Specific-T-cell Therapy[J]. China Biotechnology, 2019, 39(2): 49-61.
[8] Yi-ying WANG,Hai-rong CHENG. Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis[J]. China Biotechnology, 2018, 38(8): 41-49.
[9] Jun-jun CHEN,Ying LOU,Yuan-xing ZHANG,Qin LIU,Xiao-hong LIU. Expression and Purification of Proliferating Cell Nuclear Antigen in Spodoptera frugiperda Cells[J]. China Biotechnology, 2018, 38(7): 14-20.
[10] HE Ya-nan,SUN Yu-liang,REN Ya-kun,LIANG Sheng-ying,YANG Fen,LIU Yan-li,LIN Jun-tang. The Construction and Functional Analysis of Staphylococcal Enterotoxin-like K and GFP Fusion Protein[J]. China Biotechnology, 2018, 38(12): 14-20.
[11] LI Rong-qing,QUAN Chun-shan,ZHANG Li-ying,LIU Jia-lu,ZHANG Xiang,SHANG Fei. Progress in the Synthesis of Artificial Antigen[J]. China Biotechnology, 2018, 38(12): 65-75.
[12] SUN Wen-jia, YAO Yu-feng, YANG Xu, HUANG Wei-wei, LIU Cun-bao, LONG Qiong, CHU Xiao-jie, MA Yan-bing. Presentation of HPV 16L1 Peptide-based HBcAg Virus-like Particle and Induction of Specific Antibody[J]. China Biotechnology, 2017, 37(3): 58-64.
[13] ZHAO Yi-jin, WANG Teng-fei, WANG Jun-qing, WANG Rui-ming. Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores[J]. China Biotechnology, 2017, 37(1): 71-80.
[14] XUE Ling, LIU Jiang-ning, ZHANG Yao, ZHANG Chun, WANG Qi, QIN Chuan, LIU Yong-dong, SU Zhi-guo. Affinity Purification of Enterovirus 71 Fused Multi-Epitope Protein Antigen and Assembling It as Virus-like Particles in Vitro[J]. China Biotechnology, 2016, 36(7): 34-40.
[15] HU Gui-yuan, YANG Tao-wei, RAO Zhi-ming, LIU Mei, XU Mei-juan, ZHANG Xian. Improved Production of 2,3-Butanediol by Enhancing the Level of Intracellular NADH and Activity of Acetoin Reductase[J]. China Biotechnology, 2016, 36(6): 57-64.