Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (8): 54-60    DOI: 10.13523/j.cb.20140809
    
De Novo Design and High-throughput Screening Strategy Achieved Over Expression of Yarrowia lipolytica Lipase YLL in Pichia patoris
YANG Jiang-ke, MAO Ling, ZHOU Wen-jing, CHEN Jiang-shan, HU Chen
School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
Download: HTML   PDF(1913KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Lipase(EC 3.1.1.3) is a important biocatalyzer used in a variety of industrial fields. High-level lipase producing strains is the prerequisite for industrial bioapplication of lipase. De novo design, gene synthesis and high-throughput screening strategies were used to realize the overexpression of Yarrowia lipolytica lipase YLL in Pichia pastoris. By de novo design and gene synthesis of YLL lipase gene, the expression level of synthesized lipase gene was improved 1.26 fold than the original YLL gene. After that, a high throughput screening strategy including olive oil Rhodamine B plates phenotype check, 96 well plates and flask fermentation was used to acquire the over expression Pichia recombinant SILVER. In the 14 L fermentor, Pichia recombinant strain SILVER achieved the highest activity of 40 500 U/ml broths, and the protein content reached 2.52 g/L broths, which set the foundation for industrial application of YLL lipase.



Key wordsLipase      De novo design      High-throughput screening      Overexpression      Fermentation     
Received: 26 May 2014      Published: 25 August 2014
ZTFLH:  Q812  
Cite this article:

YANG Jiang-ke, MAO Ling, ZHOU Wen-jing, CHEN Jiang-shan, HU Chen. De Novo Design and High-throughput Screening Strategy Achieved Over Expression of Yarrowia lipolytica Lipase YLL in Pichia patoris. China Biotechnology, 2014, 34(8): 54-60.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140809     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I8/54


[1] Ghosh P K, Saxena R K, Gupta R, et al. Microbial lipases: production and applications. Sci Prog, 1996, 79: 119-157.

[2] Hasan F, Shah A A, Hameed A. Industrial applications of microbial lipases. Enzyme Microbial Technol, 2006, 39(26): 235-251.

[3] Hernández-Martín E, Otero C. Different enzyme requirements for the synthesis of biodiesel: Novozym 435 and Lipozyme TL IM. Bioresource Technol, 2008, 99(2): 277-286.

[4] Cregg J M. Introduction: distinctions between Pichia pastoris and other expression systems. Methods Mol Biol. 2007, 389: 1-10.

[5] Rouillard J M, Lee W, Truan G, et al. Gene2Oligo: oligonucleotide design for in vitro gene synthesis. Nucleic Acids Res, 2004, 32:176-180.

[6] Akcapinar G B, Gul O, Sezerman U. Effect of codon optimization on the expression of Trichoderma reesei endoglucanase 1 in Pichia pastoris. Biotechnol Prog, 2011, 27: 1257-1263.

[7] Öberg F, Sjöhamn J, Conner M T, et al. Improving recombinant eukaryotic membrane protein yields in Pichia pastoris: the importance of codon optimization and clone selection. Mol Membr Biol, 2011, 28: 398-411.

[8] Yang J K, Liu L Y, Dai J H, et al. de novo design and synthesis of Candida antarctica lipase B gene and a α-factor leads to high-level expression in Pichia pastoris. PLoS ONE, 2013, 8(1): e53939.

[9] Pignède G, Wang H, Fudalej F, et al. Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J Bacteriol, 2000, 182(10): 2802-2810.

[10] Pignède G, Wang H J, Fudalej F, et al. Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol, 2000, 66(8): 3283-3289.

[11] Yang J K, Chen F Y, Yan X X, et al. A simple and accurate two-step long DNA sequences synthesis strategy to improve heterologous gene expression in Pichia. PLoS ONE, 2012, 7(5): e36607.

[12] Bradford M M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, 1976, 72: 248-254.

[13] Cregg J M. Pichia Ptotocols. 2nd ed. Totowa, NJ:The Humana Press, 2007.

[14] Yu M, Lange S, Richter S, et al. High-level expression of extracellular lipase Lip2 from Yarrowia lipolytica in Pichia pastoris and its purification and characterization. Protein Expr Puri, 2007, 53: 255-263.

[15] Wang X, Sun Y, Ke F, et al. Constitutive expression of Yarrowia lipolytica lipase LIP2 in Pichia pastoris using GAP as promoter. Appl Biochem Biotechnol, 2012, 166: (5): 1355-1367.

[1] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[2] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[3] LI Bo,WANG Ze-jian,LIANG Jian-guang,LIU Ai-jun,LI Hai-dong. Breeding of High-yield Rifamycin SV Strain by Plasma Action Combined with Oxygen Restriction Model[J]. China Biotechnology, 2021, 41(2/3): 38-44.
[4] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[5] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[6] FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method[J]. China Biotechnology, 2021, 41(11): 55-63.
[7] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[8] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[9] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[10] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[11] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[12] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[13] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[14] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[15] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.