Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (04): 20-25    DOI:
    
Ang2,Tie2 RNA Interference and the Function of Them on Inhibiting Angiogenesis in vitro
WANG Biao1,LIU Zhao-liang1,LIN Ju-li1,SHAN Xiu-ying1,WANG Mei-shui1,ZHANG Sheng1,LU Kai-hua2
1.The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005,China
2.The Centre of Plastic Surgery,The Fourth Military Medical University, Xi’an 710043,China
Download: HTML   PDF(687KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: The expression of Ang2 and Tie2 is silenced by RNA interference in order to inhibit the angiogenesis in vitro. The study will supply the theory basis to the further animal research on the inhibition of tumor angiogenesis in vivo and provide the experimental evidence for tumor gene therapy in future. Methods: Using pSilencer 1.0-U6-Ang2/Tie2-siRNA recombinant plasmid to transfect into human umbilical vein endothelial cells (HUVECs), using RT-PCR to analyze the mRNA expression levels of Ang2 and Tie2 in HUVECs of each groups respectively. And the formation of vascular-like structure in HUVECs,transfected by the plasmids ,was studied in vitro by three-dimensional culture. Results: After the recombinant plasmids of pSilencer1.0-U6-Ang2/Tie2-siRNA transfected HUVECs,the mRNA expression levels of Ang2 、Tie2 in HUVECs were average obviously suppressed by RT-PCR(P<0.05),and there is no significant difference on the expression levels(P>0.05)between the two plasmids of each siRNA . There is a significant decrease on the quantity and length of vascular-like structure in HUVECs,transfected with the recombinant plasmids by three-dimensional culture model in vitro,(P<0.05).It proves that angiogenesis has been inhibited significantly in vitro. Conclusions:Ang2-siRNA、Tie2-siRNA can inhibit the mRNA expression of Ang2、Tie2 in HUVECs, and inhibit angiogenesis in the model of three-dimensional culture in vitro.



Key wordsRNA interfierence      Angiopoietin family and receptors      Angiogenesis      in vitro three-dimensional endothelial cell culture     
Received: 23 December 2009      Published: 29 April 2010
Cite this article:

. Ang2,Tie2 RNA Interference and the Function of Them on Inhibiting Angiogenesis in vitro. China Biotechnology, 2010, 30(04): 20-25.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I04/20

[1] Rana Tariq M. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol,2007,8:2336. 
[2] McManus M T,Sharp P A.Gene silencing in mammals by small interfering RNAs.Nature,2002,3(10):737747. 
[3] Nykanen A, Haley B, Zamore P D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 2001,107:309321. 
[4] Hannon Gregory J,Rossi John J.Unlocking the potential of the human genome with RNA interference.Nature,2004,431:371378. 
[5] Malsonpierre P C,Suri C.Jones P F,et at.Angiopoietin2.a natural antagonist for tie2 that disrupts in vivo angiogenesis. Science,1997,277(5322):5560. 
[6] George D Y,Samuel D,Nicholas W G,et al.Vascularspecific growth factors and blood vessel formation.Nature,20O0,407:242248. 
[7] Arai F,Hirao A,Ohmura M,et a1.Tie2/Angiopoietin1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche.Cell,2004,118:149161. 
[8] Fiedler U,Augustin H G.Angiopoietins:a link between angiogenesis and inflammation.Trends Immunol,2006,27(12):552558. 
[9] Jonathan Oliner,Hosung Min, Juan Leal, et al. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin2. Cancer Cell,2004,6(5):507516. 
[10] Rebekah R White,Siqing Shan,Christopher P, et al. Inhibition of rat corneal angiogenesis by a nucleaseresistant RNA aptamer specific for angiopoietin2. PNAS,2003,100:50285033. 
[11] Lin P,Buxton J A,Acheson A,et al.Antiagiogeni gene therapy targeting the endotheliumspecific receptor tyrosine kinase Tie2.Proc Natl Acad Sci USA,1998,95:88298834. 
[12] 王彪,单秀英,林菊丽,等. 促血管生成素2及其受体Tie2基因RNA干扰表达载体的构建与鉴定.医学综述,2009,15(21):34983501. Wang B, Shan X Y, Lin J L, et al. Medical Recapitulate,2009,15(21):34983501. 
[13] 林菊丽,王彪,黄祖根,等. 体外血管生成三维培养模型的构建. 福建医科大学学报,2009,43(01)4952 Lin J L, Wang B, Huang Z G, et al.Journal of Fujian Medical University,2009,43(01)4952. 
[14] Paddison P J, Hannon G J. siRNA and shRNAs: skeleton keys to the human genome. Curr Opin Mol Ther,2003,5(3):217224. 
[15] Zhang H, Fabrice A K, Lukasz J, et al. Single processing center models for human Dicer and bacterial RNase III.Cell, 2004,118: 5768. 
[16] Saharinen P, Kerkela K, Ekman N, et al.Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2.J Cell Biol,2005,169:239240. 
[17] Xia X G, Zhou H, Ding H, et al. An enhanced U6 promoter for synthesis of short hairpin RNA. Nucleic Acids Res, 2003,31(17):100. 
[18] Dykxhoorn D M, Novina C D, Sharp P A. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol,2003,4(6):457467.

[1] LIN Lu,HU Li-jun,HUANG Yi-yun,CHEN Lu,HUANG Mao,PENG Qi,HU Qin,ZHOU Lan. S100A6 Promotes Angiogenesis Through Recruiting and Activating Macrophages[J]. China Biotechnology, 2020, 40(5): 7-14.
[2] CAO Rong-yue, YU Min-xia, ZHANG Xin-li, LI Man-man, MIAO Zi-tao, JIN Liang. Construction,Expression,Purification of VEGFⅡ/GRP Fusion Protein and the Effects on RM-1 Prostate Tumor in Mice[J]. China Biotechnology, 2016, 36(8): 9-15.
[3] TANG Wen-yan, LUAN Zuo. Biological Characteristics and Clinical Application of Endothelial Progenitor Cells[J]. China Biotechnology, 2016, 36(10): 86-93.
[4] ZHAO Jing, LV Hui, Jiayinaguli·ZHUMABAI, SUN Su-rong. Construction of the Eukaryotic Expression Vector of PhLTP Gene and Its Primary Antitumor Effects in vitro and in vivo[J]. China Biotechnology, 2014, 34(8): 7-13.
[5] CHEN Yue, FU Zhong-ping, LI Jing-rong, YIN Xiao-jin. Expression of Fusion Protein ES-Kringle5 and Its Purification and Biological Analysis[J]. China Biotechnology, 2014, 34(5): 60-65.
[6] YUAN Xiao-ning, ZHU Yun-feng. Exosome and Its Roles in Regulation of Tumor Cell[J]. China Biotechnology, 2013, 33(8): 111-117.
[7] XIE Yan-fei, CHEN Ying-ying, ZUO Ai-ren, CAO Rong-yue. The Anti-angiogenesis Activity of Mycobacterium Tuberculosis Heat Shock Protein 65 in Intradermal B16-F10 Melanoma-bearing Mice[J]. China Biotechnology, 2012, 32(11): 8-13.
[8] XIE Yan-fei, CHEN Ying-ying, ZUO Ai-ren, CAO Rong-yue. The Anti-angiogenesis Activity of Mycobacterium Tuberculosis Heat Shock Protein 65 in Intradermal B16-F10 Melanoma-bearing Mice[J]. China Biotechnology, 2012, 32(11): 8-13.
[9] SUN Qiang-ming, PAN Yue, ZHAO Yu-jiao, CHEN Jun-ying, SHI Hai-jing, MA Shao-hui. Construction and Identification of a Lentiviral Vector Expressing Semaphorin 4D[J]. China Biotechnology, 2011, 31(7): 1-7.
[10] CHEN Guang-hui, LIU Yu, KONG Fei-fei, QIU Xin-xin, CHENG Feng, KUANG Wen-bin, LI Pu, TU Zhi-guang. Inhibitory Effects of Cyclooxygenase-2 Inhibited by shRNA on the Growth and Angiogenesis of Human Liver Cancer Cell Subcutaneous Xenograft Tumors in Nude Mice[J]. China Biotechnology, 2011, 31(03): 29-34.
[11] ZHAO Wei, HAN Hai-bo, ZHANG Zhi-qian. The Effects of Human PEX, a C-terminal Hemopexin-like Domain of MMP-2, on the Growth and Metastasis of Human Breast Cancer BICR-H1 Cells[J]. China Biotechnology, 2011, 31(03): 13-17.
[12] LV Yi, ZHENG Jin-ping. The Inhibitory Effect of Arresten Protein on Angiogesis[J]. China Biotechnology, 2011, 31(01): 19-23.
[13] ZHANG Yang-de, DUAN Jing-hua, CHEN Yu-xiang, LIAO Ming-mei, HUANG Bo-yun, ZHAO Jin-feng. Antiproliferative Effect of a Novel Cationic Nanocurcumin on Human Hepatocellular Carcinoma of HepG2 Cells[J]. China Biotechnology, 2010, 30(12): 30-35.
[14] . The Inhibition Efect of RNA Interference Silence NRP2 Expression inTransplantation Tumor of Gastric Carcinoma in Athymic Mouse[J]. China Biotechnology, 2010, 30(07): 0-0.
[15] WEN Lei, SONG Na-Ling, HE Xin, DIAO Qi-Ren. Type Ⅳ Collagen-derived Angiogenesis Inhibitors[J]. China Biotechnology, 2010, 30(05): 116-121.