Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (12): 112-117    DOI: 10.13523/j.cb.20141216
    
Research Progress on Isoamyl Alcohol Biosynthesis
XIAO Shi-yuan, XU Jing-liang, CHEN Xiao-yan, YANG Liu, LI Xie-kun, YUAN Zhen-hong
Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
Download: HTML   PDF(799KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Under the influence of energy crisis, environmental crisis and resources crisis, the development of green alternative energy attains more and more attention worldwide. Many studies have found that, compared to ethanol, isoamyl alcohol possesses higher energy density, lower vapor pressure, higher octane number and closer physical and chemical characteristics to gasoline.The technical barriers, process and key enzymes-KDCs about isoamyl alcohol production were reviewed. Finally, the future development tendency of the biosynthesis of isoamyl alcohol was also suggested.



Key wordsLsoamyl alcohol      Engineering bacteria      KDCs     
Received: 26 September 2014      Published: 25 December 2014
ZTFLH:  Q819  
Cite this article:

XIAO Shi-yuan, XU Jing-liang, CHEN Xiao-yan, YANG Liu, LI Xie-kun, YUAN Zhen-hong. Research Progress on Isoamyl Alcohol Biosynthesis. China Biotechnology, 2014, 34(12): 112-117.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20141216     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I12/112


[1] 王丹,林建强,张潇,等.直接生物转化纤维素类资源生产然料乙醇的研究进展.山东农业大学学报:自然科学版,2002, 33(4):525-529. Wang D,Lin JQ,Zhang X.Progress on driect bioconversion oflifnocellulose to ethanol.Journal of Shandong Agricultural University,2002, 33(4):525-529.

[2] Zhang K,Sawaya M R,Eisenberg D S,et al.Expanding metabolism for biosynthesis of nonnatural alcohols. Proceedings of the National Academy of Sciences,2008, 105(52):20653-20658.

[3] 朱起明.在我国发展醇类代用燃料的可行性.化工进展,2004, 5:43-49. Zhu Q M.The feasibility of the substitute fuel alcohol development in China.Chemical Progress,2004, 5:43-49.

[4] 刘娅,刘宏娟,张建安,等.新型生物燃料——丁醇的研究进展.现代化工,2009, 28(6):28-31. Liu Y, Liu H J, Zhang J A. Research progress in new biofuel butanol.Modern Chemical Industry,2009, 28(6):28-31.

[5] 陈煜强.国内外杂醇油制备香料概况与国内未来开发潜力.香料香精化妆品,1994, 2: 28. Cheng Y Q.Generalization of the preparation of spice using fusel oil at home and abroad and Chinese future development potential.Flavors Cosmetics,1994, 2:28.

[6] 袁振宏.能源微生物学.北京:化学工业出版社,2012.106-147. Yuan Z H.The Energy of Microbiology.Beijing,Chemical Industry Press,2012.106-147.

[7] 傅其军.关于酒精生产中提取杂醇油的探讨.甘蔗糖业,2006, 5: 39-42. Fu Q J.Discuss about alcohol extract fusel oil production.Cane Sugar,2006, 5: 39-42.

[8] Hazelwood L A, Daran J M, Maris A J, et al.The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Applied and Environmental icrobiology,2008, 74(8):2259-2266.

[9] Ehrlich F.Über die Bedingungen der Fuselölbildung und über ihren Zusammenhang mit dem Eiweiβaufbau der Hefe.Berichte der deutschen chemischen. Gesellschaft, 1907, 40:1027-1047.

[10] Lampitt L H.Nitrogen metabolism in Saccharomyces cerevisiae. Biochem J,1919,13(4):459-486.

[11] Yamada M.Decomposition of amino acids by yeast.Nippon Nogeikagaku Kaishi,1932,8:428-432.

[12] Thorne R S.The assimilation of nitrogen from amino acids by yeast.Inst Brew,1937,43:288-293.

[13] Dickinson J R. Lanterman M M, Danner D J, et al.A 13C Nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. Biol Chem,1997,272:26871-26878.

[14] Etschmann M M,Sell D,Schrader J.Screening of yeasts forthe production of the aroma compound 2-phenylethanol.Appl Microbiol Biotechnol,2002,59:1-8.

[15] Atsumi S, Hanai T, Liao J C.Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature,2008, 451(7174): 86-89.

[16] Shota A, Wendy H, James C L. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature Biotechnology, 2009,27(12):1177-1180.

[17] Wahlund T M, Conway T, Tabita F R. Bioconversion of CO2 to ethanol and other products. Am Chem Soc Div Fuel Chem,1996, 41:1403-1406.

[18] Deng M D, Coleman J R. Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol, 1999,65:523-528.

[19] Ezeji T, Qureshi N, Blaschek H P.Production of acetone-butanol-ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Process Biochemistry,2007, 42(1):34-39.

[20] lutz R H.Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements.Nucleic Acid Res,15;25(6):1203-1210.

[21] Liao J C, Brynildsen M P.An integrated network approach identifies the isobutanol response network of Escherichia coli. Molecular Systems Biology,2009, 5(1):277.

[22] 杨柳.异戊醇生物合成工程菌的研究.广东:中国科学院广州能源研究所生物转化团队,2014. Yang L. The Construction of recombinant bacteria producing isoamyl alcohol.Guang Dong: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences,2014.

[23] Iding H, Siegert P, Mesch K.Application of α-keto acid decarboxylases in biotransformations. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1998, 1385(2):307-322.

[24] Smit B A,Hylckama V,Engels W J, et al.Identification, cloning, and characterization of a Lactococcus lactis branched-chain α-keto acid decarboxylase involved in flavor formation. Applied and Environmental Microbiology,2005, 71(1):303-311.

[25] König S. Subunit structure, function and organisation of pyruvate decarboxylases from various organisms. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1998, 1385(2):271-286.

[26] Ezeji T, Qureshi N, Blaschek H P.Production of acetone–butanol–ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii.Process Biochemistry,2007, 42(1):34-39.

[27] Nair R V, Bennett G N, Papoutsakis E T. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobytylicum. ATCC824. J Bacteriol, 1994,176:871-885.

[28] Iding H, Siegert P, Mesch K.Application of α-keto acid decarboxylases in biotransformations. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1998, 1385(2):307-322.

[29] Smit B A,Hylckama V,Engels W J.Identification, cloning, and characterization of a Lactococcus lactis branched-chain α-keto acid decarboxylase involved in flavor formation. Applied and Environmental Microbiology,2005, 71(1):303-311.

[30] Pei X Y, Erixon K M, Luisi B F. Structural insights into the prereaction state of pyruvate decarboxylase from Zymomonas mobilis. Biochemistry,2010, 49(8):1727-1736.

[31] Arjunan P, Umland T, Dyda F,et al.Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from the yeast Saccharomyces cerevisiae at 2.3Å resolution. Journal of Molecular Biology,1996, 256(3): 590-600.

[32] Plaza M, Fernández de Palencia P, Peláez C.Biochemical and molecular characterization of α‐ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis. FEMS Microbiology Letters,2004, 238(2):367-374.

[33] Smit G, Smit B A, Engels W J. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiology Reviews,2005, 29(3):591-610.

[34] Liao J C, Atsumi S, Higashide W.Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature Biotechnology, 2009, 27(12):1177-1180.

[35] Liao J C, Cann A F. Production of 2-methyl-1-butanol in engineered Escherichia coli. Applied Microbiology and Biotechnology,2008, 81(1):89-98.

[36] 林丽华,郭媛,庞浩,等.产异丁醇大肠杆菌工程菌的构建.生物技术通报,2011, 8:208-212. Lin L H, Guo Y, Peng H, et al. The construction of recombinant E.coli producing isobutanol. Biotechnology Bulletin,2011, 8: 208-212.

[37] 林丽华,郭媛,庞浩,等.大肠杆菌中表达关键基因产异丁醇的研究.生物技术,2011,21(3),19-23. Lin L H,Guo Y,Pang H. Research of isobutanol production in Escherichia coli expressing of the key genes.Biotechnology,2011,21(3):19-23.

[38] Kalinowski J,Bathe B,Bartels D,et al.The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. Journal of Biotechnology,2003, 104(1):5-25.

[39] Atsumi S,Cann A F,Connor M R, et al.Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Engineering,2008, 10(6):305-311.

[40] Vane L M.A review of pervaporation for product recovery from biomass fermentation processes. Journal of Chemical Technology and Biotechnology,2005, 80(6):603-629.

[41] Lienhardt J,Schripsema J,Qureshi N,et al.Butanol production by Clostridium beijerinckii BA101 in an immobilized cell biofilm reactor. Applied Biochemistry and Biotechnology,2002,98(1-9):591-598.

[1] ZHAO Yu-qing, LI Jin, ZHOU Guang-qi, REN Zheng-yu, YANG Hong-ze, SUN Tian-zhu, XING Yan-jie. Study on the Specific Adsorption of Ni2+ for Nickel Bacteria in Nickel-containing Wastewater[J]. China Biotechnology, 2012, 32(11): 92-97.
[2] ZHAO Yu-qing, LI Jin, ZHOU Guang-qi, REN Zheng-yu, YANG Hong-ze, SUN Tian-zhu, XING Yan-jie. Study on the Specific Adsorption of Ni2+ for Nickel Bacteria in Nickel-containing Wastewater[J]. China Biotechnology, 2012, 32(11): 92-97.
[3] CHEN Xiao-jing, CHEN Xiao-mei, WANG Yang, SHI Hui-li, HUO Ke-ke. Prokaryotic Expression and Purification of Human SCYL1-BP1 and Its Identification[J]. China Biotechnology, 2012, 32(09): 1-8.
[4] . Studies of Escherichia coli accumulating lycopene and its culturing conditions[J]. China Biotechnology, 2006, 26(08): 47-51.