Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (11): 47-53    DOI: 10.13523/j.cb.20141107
    
The Vaccination with Saccharomyces cerevisiae Recombined with Mycobacterium tuberculosis Antigens Induces Specific Immunoresponsesin Mice
LU Jian, JIAN Jia-xi, LIU Jian-ping, WANG Hong-hai
State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
Download: HTML   PDF(1138KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Recently there were increasing reports about vaccines based on whole recombinant Saccharomyces cerevisiae. Mycobacterium tuberculosis (Mtb) protective antigens ESAT6 and Ag85B against tuberculosis were selected to be expressed in S. cerevisiae with pHR expression system. Two yeasts producing fusion proteins ESTA6-Ag85B (EA) and IFN-γ-ESAT6-Ag85B(IEA)respectively were constructed and the immune responses elicited by the recombinant yeasts were investigated in mice. Injection of mice subcutaneously with the recombinant yeasts induced Ag85B-specific IgG in high level and Th1 immune responses associated with IFN-γ and IL-2 secretion and no IL-4 production. Compared to BCG, Yeast-IEA vaccination stimulated significantly stronger immune response. It was confirmed that yeast could activated dendritic cells maturation with upregulation of co-stimulatory molecules and MHC molecules. The results suggest that the whole recombinant yeast (Yeast-IEA) may be an attractive candidate of vaccines against tuberculosis.



Key wordsSaccharomyces cerevisiae      Vaccine      Mycobacterium tuberculosis      BCG     
Received: 19 August 2014      Published: 25 November 2014
ZTFLH:  Q36  
Cite this article:

LU Jian, JIAN Jia-xi, LIU Jian-ping, WANG Hong-hai. The Vaccination with Saccharomyces cerevisiae Recombined with Mycobacterium tuberculosis Antigens Induces Specific Immunoresponsesin Mice. China Biotechnology, 2014, 34(11): 47-53.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20141107     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I11/47


[2] Kaufmann S H. Tuberculosis vaccines: time to think about the next generation. Semin Immunol, 2013, 25(2):172-181.

[3] Kaufmann S H. Fact and fiction in tuberculosis vaccine research: 10 years later. Lancet Infect Dis, 2011,11:633-640.

[4] Rowland R, McShane H. Tuberculosis vaccines in clinical trials. Expert Rev Vaccines, 2011,10(5): 645–658.

[5] Celik E, Calik P. Production of recombinant proteins by yeast cells. Biotechnology Advances, 2012, 30:1108-1118.

[6] McAleer W J, Buynak E B, Maigetter R Z, et al. Human hepatitis B vaccine from recombinant yeast. Nature, 1984, 307:178-180.

[7] Stubbs A C, Martin K S, Coeshott C, et al. Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nature medicine, 2001;7(5):625-629.

[8] Haller A A, Lauer G M, King T H, et al. Whole recombinant yeast-based immunotherapy induces potent T cell responses targeting HCV NS3 and Core proteins. Vaccine, 2007, 25(8):1452-1463.

[9] Galao R P, Scheller N, Alves-Rodrigues I, et al. Saccharomyces cerevisiae: a versatile eukaryotic system in virology. Microbial Cell Factories, 2007,6:32-37.

[10] 江佳稀,张宇飞,沈洪波,等. 表达结核杆菌抗原的重组酿酒酵母免疫小鼠研究. 复旦学报(自然科学版), 2011,50(2):192-197.
Jiang J X,Zhang Y F, Shen H B,et al.Induction of antigenspecific humoral immune response by subcutaneous vaccination with Saccharomyces cerevisia expressing Mycobacterium tuberculosis antigen.Journal of Fudan University(Natural Science),2011,50(2):192197.

[11] Bernstein M B, Chakraborty M, Wansley E K, et al. Recombinant Saccharomyces cerevisiae (yeast-CEA) as a potent activator of murine dendritic cells. Vaccine, 2008, 26(4): 509-521.

[12] Remondo C, Ceredaa V, Mostbock S, et al. Human dendritic cell maturation and activation by a heat-killed recombinant yeast (Saccharomyces cerevisiae) vector encoding carcinoembryonic antigen. Vaccine, 2009, 27:987-994.

[13] Wansley E K, Chakraborty M, Hance K W, et al. Vaccination with a recombinant Saccharomyces cerevisiae expressing a tumor antigen breaks immune tolerance and elicits therapeutic antitumor responses. Clinical Cancer Research, 2008, 14(13):4316-4325.

[14] Dietrich J, Doherty T M. Interaction of Mycobacterium tuberculosis with the host: consequences for vaccine development. APMIS, 2009, 117: 440-457.

[15] Sable S B, Verma I, Khuller G K, et al. Multicomponent antituberculous subunit vaccine based on immunodominant antigens of Mycobacterium tuberculosis. Vaccine, 2005, 23: 4175-4184.

[16] Tsolaki A G, Nagy J, Leiva S, et al. Mycobacterium tuberculosis antigen 85B and ESAT-6 expressed as a recombinant fusion protein in Mycobacterium smegmatis elicits cell-mediated immune response in a murine vaccination model. Molecular Immunology, 2013, 54(3-4):278-283.

[17] Lalvani A, Sridhar S, von Reyn C F. Tuberculosis vaccines: time to reset the paradigm. Thorax, 2013, 68(12):1092-1094.
expressing a tumor antigen breaks immune tolerance and elicits therapeutic antitumor responses. Clinical Cancer Research, 2008, 14(13):4316-4325.

[18] Dietrich J, Doherty T M. Interaction of Mycobacterium tuberculosis with the host: consequences for vaccine development. APMIS, 2009, 117: 440-457.

[19] Sable S B, Verma I, Khuller G K, et al. Multicomponent antituberculous subunit vaccine based on immunodominant antigens of Mycobacterium tuberculosis. Vaccine, 2005, 23: 4175-4184.

[20] Tsolaki A G, Nagy J, Leiva S, et al. Mycobacterium tuberculosis anresponse in a murine vaccination model. Molecular Immunology, 2013, 54(3-4):278-283.

[21] Lalvani A, Sridhar S, von Reyn C F. Tuberculosis vaccines: time to reset the paradigm. Thorax, 2013, 68(12):1092-1094.

[22] Shortman K, Liu Y J. mouse and human dendritic cell subtypes. Nature Reviews Immunology, 2002, 2(3):151-161.

[1] XIAO Yun-xi,ZHANG Jun-he,YANG Wen-wen,CHENG Hong-wei. Research Progress of Human Diploid Cells for Vaccine Production[J]. China Biotechnology, 2021, 41(11): 74-81.
[2] ZHU Xiao-jing,WANG Rui,ZHANG Xin-xin,JIN Jia-xin,LU Wen-long,DING Da-shun,HUO Cui-mei,LI Qing-mei,SUN Ai-jun,ZHUANG Guo-qing. Construction of MDV Recombinant Vaccine Strain Integrated F Gene Using Bacterial Artificial Chromosome Technique[J]. China Biotechnology, 2021, 41(10): 33-41.
[3] CHENG Xu,YANG Yu-qing,WU Sai-nan,HOU Qin-long,LI Yong-mei,HAN Hui-ming. Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response[J]. China Biotechnology, 2020, 40(7): 41-50.
[4] LIU Zhen-zhen,TIAN Da-yong. Development of Sucrose Density Gradient Centrifugation Purification Process for Rabies Vaccine[J]. China Biotechnology, 2020, 40(4): 25-33.
[5] QIAN Ying,QIAN Chen,BAI Xiao-qing,WANG Jing-jing. Application of Adjuvant in Cancer Immunotherapy[J]. China Biotechnology, 2020, 40(3): 96-103.
[6] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[7] JING Hui-yuan,DUAN Er-zhen,DONG Wang. In Vitro Transcribed Self-amplifying mRNA Vaccines[J]. China Biotechnology, 2020, 40(12): 25-30.
[8] LIAO Xiao-yan,CHEN Li-li. The Progress in the Development of COVID-19 Vaccine[J]. China Biotechnology, 2020, 40(12): 8-17.
[9] FENG Xue-jiao,HOU Hai-long,YU Qiong,WANG Jun-shu. Market Analysis and Countermeasures of Cervical Cancer Vaccine in China[J]. China Biotechnology, 2020, 40(11): 96-101.
[10] Yan GAO,Jing-jing DU,Bin WANG,Qi LIU,Zhi-qiang SHEN. Study on β-Propiolactone in Inactivation Process of Rabies Vaccine by Gas Chromatography[J]. China Biotechnology, 2019, 39(6): 25-31.
[11] Lin YANG,Zhe-yan FU,Zheng-bing LV,Jian-hong SHU. Classification and Mechanism of Immune Adjuvant[J]. China Biotechnology, 2019, 39(5): 114-119.
[12] Jia-yue XU,Zi-qian LI,Ge ZHANG. Advanced in Research Dengue Virus 3'UTRΔ30 Series Vaccines[J]. China Biotechnology, 2019, 39(3): 97-104.
[13] Fu-lan GAO,Jia-long QI,Cong-yan SHU,Hang-hang XIE,Wei-wei HUANG,Cun-bao LIU,Xu YANG,Wen-jia SUN,Hong-mei BAI,Yan-bing MA. Efficient Secretory Expression of Optimized Mouse Interleukin-33 Gene in Mammalian Cells[J]. China Biotechnology, 2019, 39(3): 46-55.
[14] Xi-wen JIANG,Zi-wei DONG,Yue LIU,Xiao-ya ZHU. Reserch Progress on Biomarkers and Precision Medicine[J]. China Biotechnology, 2019, 39(2): 74-81.
[15] SUN Si,QIU Yu-lan,YAN Ju-rong,YANG Jing,WU Guang-ying,WANG Lin,XU Wen-chun. Recombinant Plasmid pcDNA3-dnaJ Prime/DnaJ Protein Boost Immunization Induce Th1/Th17 Immune Responses and Protect Mice Against Pneumococcal Infection[J]. China Biotechnology, 2019, 39(12): 9-17.