Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (11): 67-75    DOI: 10.13523/j.cb.20141110
    
Effect of Knockouting frdB on Anaerobic Mixed Acid Fermentation for Escherichia coli
HAO Zi-kai, LI Pi-wu, HAO Zhao-cheng, CHEN Li-fei
College of Bioengineering, QILU University of Technology, Shandong Provincial Key Laboratory of Microbial Engineering, Jinan 250353, China
Download: HTML   PDF(1120KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A frdB defection strain,SPUEC103(△frdB) was constructed,by using λ-RED homologous recombination technology with QLUEC001(produced succinate) as the parent strain. The fumarate accumulated by decreasing the flux of conversion of fumarate to succinate.frdB The fermentation results showed that the mutants of Escherichia coli deficient in frdB showed slower growth,together with exploiting less glucose.At the same time,the defection of frdB could change the yields of succinate and fumarate,the yield of succinate and fumarate was the highest in LB media supplemented with 30 g/L glucosethe,the yield of succinate of dual-phase fermentation decreased from 24.6% to 15.4%.The portion of fumarate and malate in SPUEC103 increased,the final concentration of the fumarate and malate was 0.182±0.002 g/L and 0.023±0.002 g/L.And the concentration of pyruvate and acetate decreased from 1.87±0.02 g/L and 0.012±0.002 g/L to 2.36±0.03 g/L and 0.862±0.012 g/L,respectively.



Key wordsfrdB      RED technology      Fumarate      Succinate     
Received: 19 August 2014      Published: 25 November 2014
ZTFLH:  Q78  
Cite this article:

HAO Zi-kai, LI Pi-wu, HAO Zhao-cheng, CHEN Li-fei. Effect of Knockouting frdB on Anaerobic Mixed Acid Fermentation for Escherichia coli. China Biotechnology, 2014, 34(11): 67-75.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20141110     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I11/67


[1] Lee P C, Lee S Y, Hong S H, et al. Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnology Letters, 2003, 25(2):111-114.

[2] Lee J W, Lee S Y, Song H, et al. The proteome of Mannheimia succiniciproducens, a capnophilic rumen bacterium. Proteomics, 2006, 6(12):3550-3566.

[3] Wilke D.Chemicals from biotechnology:molecular plant geneticsw ill challenge the chemical and fermentation industry.Appl Microbiol Biotechnol,1999,52(3):135-145.

[4] Coustou V, Besteiro S,Riviere L, et al. A mitochondrial NADH-dependent fumarate reductase involved in the production of succinate excreted by procyclic Trypanosoma brucei.J Biol Chem,2005,280(17):16559-16570.

[5] Wang Q Z, Wu C Y, Chen T, et al. Expression of galactose permease and pyruvate carboxylase in Escherichia coli ptsG mutant increases the growth rate and succinate yield under anaerobic conditions. Biotechnology Letters,2006,28(3):89-93.

[6] Sanchez A M, Bennett G N, San K Y. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metabolic Engineering,2005,7(3):229-239.

[7] Datsenko K, Wanner B. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA,2000,97(12):26-40.

[8] 严涛,赵锦芳,高文慧,等.大肠杆菌工程菌ptsG基因敲除及其缺陷株混合糖同型乙醇发酵.生物工程学报,2013,29(7): 937-945. Yan T, Zhao J F, Gao W H, et al. Knockout of the ptsG gene in engineered Escherichia coli and homoethanol fermentation from sugar mixture. Chin J Biotech,2013,29(7):937-945.

[9] 白光兴, 孙志伟,黄莺,等.利用Red重组系统对大肠杆菌ClpP基因的敲除. 中国生物化学与分子生物学报,2005,21(1):35-38. Ban G X,Sun Z W,Huang Y, et al. Deletion of ClpP in Chromosome of E. coli by Red Recombination. Chinese Journal of Biochemistry and Molecular Biology, 2005,21(1):35-38.

[10] 吴亚斌.产L_苹果酸重组大肠杆菌的构建和发酵性能研究.无锡:江南大学,2012. Wu Y B.The Construction and Fermentation of Recombinant Escherichia coli for L-Malic acid Production.Wuxi: Jiangnan University, 2012.

[11] 王光明,马江锋,梁丽亚,等.敲除富马酸酶基因对E.coli厌氧混合酸发酵的影响.生物加工工程,2012,10(1):46-50. Wang G M,Ma J F,Liang L Y,et al.Effect of knockouting fumB on anaerobic mixed acid fermentation for E.coli. Chinese Journal of Bioprocess Engineering,2012,10(1):46-50.

[12] Chou C H, Bennett G N, San K Y. Effect of modified glucose uptake using genetic engineering techniques on high-level recombinant protein production Escherichia coli dense cultures.Biotechnol Bioeng,1994,44(8):952-960.

[13] 韩聪,张惟材,游松,等.大肠杆菌ptsG基因敲除及其缺陷株生长特性研究.生物工程学报,2004,20(1):16-20. Han C, Zhang W C, You S, et al. Knockout of the ptsG gene in Escherichia coli and cultural characterization of the mutants. Chin J Biotech,2004,20(1):16-20.

[14] Sanchez A M, Bennett G N,San K Y.Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant.Biotechnol Prog,2005,21(2):358-365.

[15] Lin H, Bennett G N, San K Y. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metabolic Engineering, 2005,7(2): 116-227.

[16] Millard C S, Chao Y P, Liao J C, et al. Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Applied and Environmental Microbiology, 1996, 62(5): 1808-1810.

[17] Chatterjee R, Millard C S, Champion K, et al. Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Applied and Environmental Microbiology, 2001, 67(1): 148-154.

[18] Lin H, Bennett G N, San K Y. Chemostat culture characterization of Escherichia coli mutant strains metabolically engineered for aerobic succinate production: A study of the modified metabolic network based on metabolite profile, enzyme activity, and gene expression profile. Metabolic Engineering, 2005, 7(5): 337-352.

[19] Kim P, Laivenieks M, Vieille C, et al. Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. Applied and Environmrntal Microbiology,2004, 70(2): 1238-1241.

[20] Christian A, David H, Kris A, et al. Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli. Biotechnology Progress,2007, 23(2): 381-388.

[21] Sanchez A M, Bennett G N, San K Y. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metabolic Engineering, 2005, 7(3): 229-239.

[22] Hong S H, Lee S Y.Metabolic flux analysis for succinic acid pro-duction by recombinant Escherichia coli with amplified malic enzyme activity.Biotechnol Bioeng,2001,74(2):89-95.

[1] LIU Wei, ZHENG Pu, JIN Xin-na. Effects of Disrupting Acetate Formation Pathways in Corynebacterium acetoacidophilum on Succinate Production Under Oxygen Deprivation[J]. China Biotechnology, 2014, 34(9): 48-55.
[2] ZHANG Yang, DU Shan-shan, XIE Xi-xan, XU Qing-yang, CHEN Ning. Effect of purA Gene Overexpression on Adenosine Accumulation[J]. China Biotechnology, 2011, 31(12): 22-26.
[3] . Succinate Production from Escherichia coli Mutant QQS101 Fermentation[J]. China Biotechnology, 2010, 30(10): 0-0.
[4] LI Yi-kui, KANG Jun-hua, KANG Zhen, GENG Yan-ping, WANG Yi-hua, QI Qing-sheng. Succinate Production from Escherichia coli Mutant QQS101 Fermentation[J]. China Biotechnology, 2010, 30(10): 39-43.
[5] XU Li, MA Jiang-Feng, YUE Fang-Fang, LIU Shu-Wen, JIANG Min. Fermentation Characteristics Research of Recombinant Escherichia coli for Succinate Production[J]. China Biotechnology, 2010, 30(09): 43-48.
[6] RAO Zhi-Meng, XU Mei-Juan, LIU Yuan-Xiu, ZHOU Chen, LA Chun-Yan, DOU Wen-Fang, ZHANG Xiao-Mei-Hu, HONG Yu, HU Zheng-Hong. Cloning, Expression and Analysis of the argH Gene Encoding Argininosuccinate  Lyase from Corynebacterium crenatum[J]. China Biotechnology, 2010, 30(09): 49-55.