Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (3): 74-79    DOI:
    
Expression of Thermomyces lanuginosus Xylanase 1YNA and Its Disulphide Bridge Mutant in Pichia Pastoris
LI Si-jia1, WANG Ya-wei1, FU Zheng1, WANG Wen-jun1, Ossi Turunen2, XIONG Hai-rong 1
1. Engineering Research Centre of Bioresource in Southern China, College of Life Science, South-central University for Nationalities, Wuhan 430074, China;
2. Aalto University, School of Chemical Technology, Department of Biotechnology and Chemical Technology, FI-00076 Aalto, Finland
Download: HTML   PDF(592KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  The wild type xylanase gene (1yna) and its disulfide bridge mutant gene were linked to vectors pPIC9, and then transformed into Pichia pastoris GS115 to construct the recombinant strains for expression the wild type xylanase (TLX) and its disulfide bridge mutant (DSB), respectively. The recombinants express TLX and DSB at high level, with electrophoresis pure protein products. In shake flask cultivation, the protein expression levels by P. pastoris were 1.75 mg/ml (TLX) and 1.82 mg/ml (DSB), respectively. The enzymatic properties showed that DSB performed the optimum temperature at 75℃, and the TLX performed the optimum temperature at 68℃. DSB showed a better thermostabllity than TLX. After 30 min inactivation at 75℃, DSB still remained 50% of the residual activity, whereas TLX only remained less than 20% of its activity.

Key wordsXylanase 1YNA      Pichia Pastoris      Heterologous expression      Characterization      Thermostability     
Received: 28 November 2012      Published: 25 March 2013
ZTFLH:  Q78  
Cite this article:

LI Si-jia, WANG Ya-wei, FU Zheng, WANG Wen-jun, Ossi Turunen, XIONG Hai-rong. Expression of Thermomyces lanuginosus Xylanase 1YNA and Its Disulphide Bridge Mutant in Pichia Pastoris. China Biotechnology, 2013, 33(3): 74-79.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I3/74

[1] Pormonen M, Valjakka J, Valjakka K, et al. Molecular dynamics studies on the thermostability of family 11 xylanases. Protein Engineering Design and Selection, 2007, 20: 551-559.
[2] 付正, 张华山, 曾小英, 等. 嗜热真菌木聚糖酶1YNA的表达和定点突变. 湖北农业科学, 2011, 50(7): 1487-1493. Fu Z, Zhang H S, Zeng X Y, et al. Characterization and site-directed mutagenesis of xylanase 1YNA from thermomyces lanuginosus DSM 10635. Hubei Agricultural Sciences, 2011, 50(7): 1487-1493.
[3] 杨浩萌, 姚斌, 范云六. 木聚糖酶分子结构与酶学性质关系的研究进展. 生物工程学报, 2005, 21(1): 6-11. Yang H M, Yao B, Fan Y L. Recent advances in structures and relative enzyme properties of xylanase. Chinese Journal Biotechnology, 2005, 21(1):6-11.
[4] 张红莲, 姚斌, 王亚茹, 等. 链霉菌Streptomyces olivaceoviridis A1木聚糖酶基因xynA 在大肠杆菌及毕赤酵母中的高效表达. 生物工程学报, 2003, 19(1): 41-45. Zhang H L, Yao B, Wang Y R, et al. Expression of Xylanase Geng xynA from Streptomyces olivaceoviridis A1 in Escherichia coli and Pichia pastoris. Chinese Journal Biotechnology, 2003, 19(1): 41-45.
[5] 李宁. 链霉菌来源的木聚糖降解酶相关基因的克隆及酶学性质的研究. 北京, 中国农业科学院, 2009. Li N. Gene Cloning and Characterization of the Xylanolytic Enzymes from Streptomyces spp. Beijing: Chinese Academy of Agricultural Sciences, 2009.
[6] 吴行伟, 刘泽源, 李前, 等. 质粒pBV220-PTD-tCNTF转化BL21菌株感受态细胞的高效制备方法. 中国药理学通报, 2012, 28(4): 584-587. Wang X W, Liu Z Y, Li Q, et al. A high efficient preparation method of pBV220-PTD-tCNTF transformed into E.coli BL21 competent cells. Chinese Pharmacological Bulletin, 2012, 28(4): 584-587.
[7] 王国增. 不同环境中木聚糖酶基因多样性分析及宏基因组来源的新基因的克隆与表达. 北京, 中国农业科学院, 2011. Wang G Z. Diversity of Xylanase Gene in Different Environment and Heterologous Expression of Novel Xylanase Gene Cloned Directly from Metagenomic DNA. Beijing: Chinese Academy of Agricultural Sciences, 2011.
[8] Orna E, Tsaffrir Z. Linearization of the bradford protein assay. Journal of Visualized Experiments, 2010, (38): 1918.
[9] 韩承业, 余世袁, 欧阳嘉, 等. 定点突变提高里氏木霉木聚糖酶(XYNⅡ)的稳定性. 生物工程学报, 2010, 26(5): 623-629. Han C Y, Yu S Y, OuYang J, et al. Enhancing stability of trichoderma reesei Xylanase (XYNⅡ) by site-directed mutagenesis. Chinese Journal Biotechnology, 2010, 26(5): 623-629.
[10] 江正兵, 宋慧婷, 马立新. 短小芽孢杆菌木聚糖酶基因在毕赤酵母中的分泌表达及酶学性质的研究. 生物工程学报, 2003, 19(1): 50-55. Jiang Z B, Song H T, Ma L X. Secreted expression of bacillus pumilus xylanase gene in pichia pastoris and study on enzymatic properties. Chinese Journal Biotechnology, 2003, 19(1): 50-55.
[11] 韦跃华, 毛爱军, 何永志, 等. 里氏木霉内切-β-甘露聚糖酶基因在毕赤酵母中的表达. 生物工程学报, 2005, 21(6): 878-883. Wei Y H, Mao A J, He Y Z, et al. Expression of endo-β-mannanase gene from trichoderma reesei in pichia pastoris. Chinese Journal Biotechnology, 2005, 21(6): 878-883.
[12] Xiong H, Nyyss A, Jis J, et al. Characterization of the xylanase produced on submerged cultivation by Thermomyces lanuginosus DSM 10635. Enzyme and Microbial Technology, 2004, 35(1): 93-99.
[13] Wang Y W, Fu Z, Huang H Q, et al. Improoved thermal performance of thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Bioresource Technology, 2012, 112: 275-279.
[1] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[2] MING Yue,ZHAO Zi-tong,WANG Hong-lei,LIANG Zhi-hong. Modification Strategy of Enzyme Thermal Stability Based on Sequence and Structure Analysis[J]. China Biotechnology, 2021, 41(10): 100-108.
[3] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[4] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[5] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[6] SU Yi,JIANG Ling-li,LIN Jun-sheng. Characterization of the Affinity Between Low Molecular Weight Targets and Their Aptamers[J]. China Biotechnology, 2019, 39(11): 96-104.
[7] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[8] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[9] Jun-jun CHEN,Ying LOU,Yuan-xing ZHANG,Qin LIU,Xiao-hong LIU. Expression and Purification of Proliferating Cell Nuclear Antigen in Spodoptera frugiperda Cells[J]. China Biotechnology, 2018, 38(7): 14-20.
[10] Cun-duo TANG,Hong-ling SHI,Yue MA,Peng-ju DING,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Gene Mining, Expression and Characterization of Novel R-mandelate Dehydrogenases[J]. China Biotechnology, 2018, 38(2): 30-37.
[11] LI Bo, LIANG Nan, LIU Duo, LIU Hong, WANG Ying, XIAO Wen-hai, YAO Ming-dong, YUAN Ying-jin. Metabolic Engineering of Saccharomyces cerevisiae for Production of 8-Dimenthylally Naringenin[J]. China Biotechnology, 2017, 37(9): 71-81.
[12] LI Dan, HUANG He. Heterologous Expression of Nanobodies:a Recent Progress[J]. China Biotechnology, 2017, 37(8): 84-95.
[13] LIU Yan-juan, LI Xu-juan, YUAN Hang, LIU Xian, GAO Yan-xiu, GONG Ming, ZOU Zhu-rong. Fusing the Acyl Carrier Protein Enhances the Solubility and Thermostability of the Recombinant Proteins in Escherichia coli[J]. China Biotechnology, 2017, 37(7): 115-123.
[14] RAO Jing-jing, JING Yi-xian, ZOU Ming-yue, HU Xiao-lei, LIAO Fei, YANG Xiao-lan. Clone, Expression and Characterization of the Uricase from Meyerozyma guilliermondii[J]. China Biotechnology, 2017, 37(11): 74-82.
[15] WANG Shi-wei, WANG Min, WANG Qing-hui. Purification,Crystallization and Characterization of a Nitrile Hydratase from Rhodococcus ruber CGMCC3090 Strain[J]. China Biotechnology, 2017, 37(10): 42-52.