Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (06): 75-83    DOI: 10.13523/j.cb.20140611
    
Advance in Research on Cellulase Expression in Saccharomyces cerevisiae
YANG Hua-jun1, ZOU Shao-lan2, LIU Cheng2, MA Yuan-yuan2, MA Xiang-xia3, HONG Jie-fang2
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
2. Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China;
3. Tianjin Pharmaceutical Tech-Development Co., Ltd., Tianjin 300193, China
Download: HTML   PDF(485KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Consolidated bioprocessing (CBP) is a promising technology for lignocellulosic ethanol production, and the key to CBP is the engineering of a microorganism that can efficiently utilize cellulose. Saccharomyces cerevisiae is a traditional ethanol producing strain, and it has many advantages as the CBP host strains, so the expression of cellulase in S. cerevisiae is causing great interest. The factors that influence the expression of cellulase genes in S. cerevisiae, including gene expression cassette expression elements (promoter, signal peptide and terminator, etc.), cellulase gene copy number and existing forms, the sources of cellulase gene and so on were reviewed. In addition, research progress about one or more cellulase genes expressed in S. cerevisiae and the construction of CBP strains were briefly introduced.



Key wordsCellulase      Consolidated bioprocessing(CBP)      Saccharomyces cerevisiae      Cellulosic ethanol     
Received: 15 March 2014      Published: 25 June 2014
ZTFLH:  Q786  
Cite this article:

YANG Hua-jun, ZOU Shao-lan, LIU Cheng, MA Yuan-yuan, MA Xiang-xia, HONG Jie-fang. Advance in Research on Cellulase Expression in Saccharomyces cerevisiae. China Biotechnology, 2014, 34(06): 75-83.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140611     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I06/75


[1] Demain A L,Newcomb M,Wu J H. Cellulase,clostridia,and ethanol. Microbiol Mol Biol Rev,2005, 69:124-154.

[2] Daniel C, la Grange, de Haan R, et al. Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol, 2010, 87:1195-1208.

[3] Krishnan C, Sousa L D, Jin M, et al. Alkali-based APEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng, 2010, 107:441-450.

[4] Lynd L R, van Zyl W H, McBride J E, et al. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol, 2005, 16(5):577-583.

[5] Hahn-Hgerdal B, Galbe M, Gorwa-Grauslund M F, et al. Bio-ethanol——the fuel of tomorrow from the residues of today. Trends Biotechnol, 2006, 24:549-556.

[6] Li M Z, Elledge S J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods, 2007, 4:251-256.

[7] Shao Z Y, Zhao H, Zhao H M. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res, 2009, 37:e16.

[8] Gibson D G. Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res, 2009, 37:6984-6990.

[9] la Grange D C, den Haan R, van Zyl W H. Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol, 2010, 87(4):1195-1208.

[10] 张惠展. 基因工程概论.上海:华东理工大学出版社, 1999.213. Zhang H Z. Outline of Genetic Engineering. Shanghai:East China University of Science and Technology Press, 1999.213.

[11] Porro D, Sauer M, Branduardi P, et al. Recombinant protein production in yeasts. Molecular Biotechnology, 2005, 31:245-259.

[12] den Haan R, Rose S H, Lynd L R, et al. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng, 2007, 9:87-94.

[13] Van Rensburg P, Van Zyl W H, Pretorius I S. Engineering yeast for efficient cellulose degradation.Yeast, 1998, 14(1):67-76.

[14] Cho K M, Yoo Y J, Kang H S. δ-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb Technol, 1999, 25:23-30.

[15] Khramtsov N, McDade L, Amerik A, et al. Industrial yeast strain engineered to ferment ethanol from ligocellulosic biomass. Bioresource Technology, 2011, 102(17): 8310-8313.

[16] Fujita Y, Ito J, Ueda M, et al. Synergistic saccharification, and direct fermentation to ethanol of amorphous cellulose by use of engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol, 2004, 70:1207-1212.

[17] Matano Y, Hasunuma T, Kondo A. Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour Technol, 2012, 108:128-133.

[18] Yamada R, Yanase S, Kaneko S, et al. Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol J, 2010, 5:449-455.

[19] Yamada R, Taniguchi N, Tanaka T, et al. Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol Biofuels, 2011, 4:8.

[20] Fujita Y, Takahashi S, Ueda M, et al. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol, 2002, 68(10):5136-5141.

[21] 张国畅. 利用代谢工程、辅酶工程及酶工程构建重组酿酒酵母木糖利用菌株以生产乙醇的研究. 天津:天津大学, 2011. Zhang G CH. Metabolic engineering, cofactor engineering and enzymatic engineering for construction of recombinant xylose-utilizing Saccharomyces cerevisiae strains to produce ethanol. Tianjin:Tianjin University, 2011.

[22] Bitter G A, Chen K K, Banks A R, et al. Secretion of foreign proteins from Saccharomyces cerevisiae directed by alpha-factor gene fusions. Proc Natl Acad Sci USA, 1984, 81(17): 5330-5334.

[23] Moir D T, Dumais D R. Glycosylation and secretion of human alpha-1-antitrypsin by yeast. Gene, 1987, 56:209-217.

[24] Hinnen A, Meyhack B, Heim J. Heterologous gene expression in yeast. In: Barr P J, Barke A J, Valenzuela P.ed.Yeast Genetic Engineering, Boston:Butterworths,1989.189-213.

[25] Baldari C, Murray J A, Ghiara P, et al. A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1beta in Saccharomyces cerevisiae. EMBO J, 1987, 6(1): 229-234.

[26] Kotaka A, Bando H, Kaya M, et al. Direct ethanol production from barley beta-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng, 2008, 105(6):622-627.

[27] Matano Y, Hasunuma T, Kondo A. Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour Technol, 2012, 108:128-133.

[28] Liu L, Liu C, Zou S, et al. Expression of cellulase genes in Saccharomyces cerevisiae via δ-integration subject to auxotrophic markers. Biotechnol Lett, 2013, 35:1303-1307.

[29] Wang G, Liu C, Hong J, et al. Comparison of process configurations for ethanol production from acid- and alkali-pretreated corncob by Saccharomyces cerevisiae strains with and without β-glucosidase expression. Bioresour Technol, 2013, 142:154-161.

[30] Zhang W N, Liu C, Wang G C, et al. Comparison of the expression in Saccharomyces cerevisiae of endoglucanase II from Trichoderma reesei and endoglucanase I from Aspergillus aculeatus. BioResources, 2012, 7(3):4031-4045.

[31] Jeon E, Hyeon J E, Suh D J, et al. Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera beta-glucosidase genes. Mol Cells, 2009, 28(4):369-373.

[32] Smith R A, Duncan M J, Moir D T. Heterologous protein secretion from yeast. Science, 1985, 229:1219-1224.

[33] Ekino K, Hayashi H, Moriyama M, et al. Engineering of polyploid Saccharomyces cerevisiae for secretion of large amounts of fungal glucoamylase. Appl Environ Microbiol, 2002, 68(11):5693-5697.

[34] Dujon B. The yeast genome project: what did we learn? Trends Genet, 1996, 12(7):263-270.

[35] Yamada R, Taniguchi N, Tanaka T, et al. Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact, 2010, 9:32.

[36] Takada G, Kawaguchi T, Sumitani J, et al. Expression of Aspergillus aculeatus NO. F-50 cellobiohydrolase I (cbh1) and β-glucosidase 1 (bgl1) genes by Saccharomyces cerevisiae. Biosci Biotechnol Biochem, 1998, 62(8):1615-1618.

[37] Errede B, Company M, Huchison C A. Ty1 sequence with enhancer and mating-type-dependent regulatory activities. Mol Cell Biol, 1987, 7(1): 258-265.

[38] Yang H, Liu C, Zou S, et al. Improving bgl1 gene expression in Saccharomyces cerevisiae through meiosis in an isogenic triploid. Biotechnol Lett, 2014, doi: 10.1007/ s10529-014-1471-z.

[39] 徐丽丽,沈煜,鲍晓明. 酿酒酵母纤维素乙醇统合加工(CBP)的策略及研究进展. 生物工程学报, 2010, 26(7):1-10. Xu L L, Shen Y, Bao X M. Progress and strategies on bioethanol production from lignocellulose by consolid ated bioprocessing (CBP) using Saccharomyce scerevisiae. Chinese Journal of Biotechnology, 2010, 26(7):1-10.

[40] Khaw T S, Katakura Y, Koh J, et al. Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch. Appl Microbiol Biotechnol, 2006,70:573-579.

[41] Schwarz W H. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol, 2001, 56:634-649.

[42] Tsai S L, DaSilva N A, Chen W. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol, 2013, 2(1):14-21.

[43] Wood T M. Fungal cellulases. Biochem Soc Trans, 1992, 20:46-53.

[44] Voutilainen S P, Murray P G, Tuohy M G, et al. Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng Des Sel, 2010, 23:69-79.

[45] den Haan R, Kroukam P H, van Zyl J H D, et al. Cellobiohydrolase secretion by yeast: Current state and prospects for improvement. Process Biochem, 2013, 48:1-12.

[46] Ilmén M, den Haan R, Brevnova E, et al. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofuels, 2011, 4:30.

[47] Olson D G, McBride J E, Shaw A J, et al. Recent progress in consolidated bioprocessing. Curr Opin Biotechnol, 2012, 23:396-405.

[48] Baek S H, Kim S, Lee K, et al. Cellulosic ethanol production by combination of cellulase-displaying yeast cells. Enzyme Microb Technol, 2012, 51(6-7):366-372.

[49] Wilde C, Gold N, Bawa N, et al. Express of a library of fungal β-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain. Appl Microbiol Biotechnol, 2012, 95: 647-659.

[50] Tang H, Hou J, Shen Y, et al. High β-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation. J Microbiol Biotechnol, 2013, 23(11):1577-1585.

[1] LIN Yan-mei,LUO Xiang,LI Rui-jie,QIN Xiu-lin,FENG Jia-xun. Probing the Role of N-glycosylation on the Catalytic Domain in the Activity and Secretion of Fungal Cellobiohydrolase[J]. China Biotechnology, 2021, 41(4): 18-29.
[2] XU Xiao, CHENG Chi, YUAN Kai, XUE Chuang. Research Progress of Cellulase Production in Trichoderma reesei[J]. China Biotechnology, 2021, 41(1): 52-61.
[3] Ying-ying ZHANG,Bin TANG,Guo-cheng DU. Study on the Intracellular Glycosyl Donor and Structural Function of Cellobiose Synthase from Rhizopus stolonifer[J]. China Biotechnology, 2018, 38(4): 38-45.
[4] MEI Xue-ang, CHEN Yan, WANG Rui-zhao, XIAO Wen-hai, WANG Ying, LI Xia, YUAN Ying-jin. Engineered Yeast Cell for Producing Zeaxanthin[J]. China Biotechnology, 2016, 36(8): 64-72.
[5] WANG Rui-zhao, PAN Cai-hui, WANG Ying, XIAO Wen-hai, YUAN Ying-jin. Design and Construction of highβ-carotene Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(7): 83-91.
[6] ZHANG Wen-qian, XIAO Wen-hai, ZHOU Xiao, WANG Ying. Effect of Post-squalene Genes on the Synthesis of 7-Dehydrocholesterol in the Artificial Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(6): 39-50.
[7] MENG Qing-ting, TANG Bin. The Role of Carbon Metabolism Repressor CRE in the Regulation of Cellulase Produced by Rhizopus stolonifer[J]. China Biotechnology, 2016, 36(3): 31-37.
[8] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[9] ZHONG Cheng, LIU Ling-pu, LI Qing-liang, YANG Pan-fei, HAO Jun-guang, JIA Shi-ru. Analyze the Mechanism of Flavor Compounds Formation Using Metabonomics Method During Industrial Beer Fermentation[J]. China Biotechnology, 2016, 36(12): 49-58.
[10] LIU Bao-li, LIU Gao-gang, LIN Qiu-hui, LI Bing-zhi, YUAN Ying-jin. Construction of Recombinant Xylose-utilizing Saccharomyces cerevisiae by Three-plasmid Co-transformation Combinatorial Screening Method[J]. China Biotechnology, 2016, 36(12): 86-97.
[11] LIANG Xiang nan, ZHANG Kun, ZOU Shao lan, WANG Jian jun, MA Yuan yuan, HONG Jie fang. Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration[J]. China Biotechnology, 2016, 36(11): 54-62.
[12] ZHANG Xu, DING Jian, GAO Peng, GAO Min-jie, JIA Lu-qiang, TU Ting-yong, SHI Zhong-ping. Fed-batch Culture of Saccharomyces cerevisiae with Adaptive Control Based on Differential Evolution Algorithm[J]. China Biotechnology, 2016, 36(1): 68-75.
[13] SUN Huan, JIA HAI-yang, FENG XU-dong, LIU Yue-qin, LI Chun. Screening of Heat-resistant Device in Saccharomyces cerevisiae[J]. China Biotechnology, 2015, 35(3): 75-83.
[14] ZHANG Xu, WANG Jing-jing, LIU Jian-ping. The Optimization of Saccharomyces cerevisiae Expression System by Mutagenesis of Promoter and Host Strain[J]. China Biotechnology, 2015, 35(1): 61-66.
[15] LIU Yu-xue, ZHANG Yi-xin, WANG Lei, LIN Xin-ping, ZHU Zhi-wei, ZHAO Zong-bao. Formation of Equol from Dihydrodaidzein by Recombinant Saccharomyces cerevisiae[J]. China Biotechnology, 2014, 34(4): 41-45.