Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (03): 120-123    DOI:
    
Studies of HSP30 from Fungi
CHEN Wen-jing, CHEN Ming, XU Yi-feng, SHI Bi-hong
College of Life Science, Fujian Normal University, Fuzhou 350108,China
Download: HTML   PDF(337KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Heat shock protein 30 is one of small Heat Shock Proteins (sHSPs), and is being widely investigated in fungi. Genes encoding heat shock protein from different fungi have been cloned and tested. Studies on HSP30 was mainly focus on the expression of stress leves and transcriptional regulation,and the synthesis mechanism of HSP30 under stress response is still unclear. The research progress of HSP30 and its application prospect is reviewed.



Key wordsHeat shock protein      HSP30      Fungi     
Received: 27 September 2010      Published: 01 April 2011
ZTFLH:  Q939.5  
Cite this article:

CHEN Wen-jing, CHEN Ming, XU Yi-feng, SHI Bi-hong. Studies of HSP30 from Fungi. China Biotechnology, 2011, 31(03): 120-123.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I03/120

[1] Hightower L E. Stress Proteins in Biology and Medicine. In: Richard I. Morimoto, Alfred Tissieres, Costa Georgopoulos. Cold Spring Harbor Monograph Series 19.X.NY: Cold Spring Harbor Laboratory,1990, 249(4968):572-573.
[2] Plesofsky-Vig N, Brambl R. Two developmental stages of Neurospora crassa utilize similar mechanisms for responding to heat shock but contrasting mechanisms for recovery. Mol Cell Biol, 1987, 7(9):3041-3048.
[3] Panaretou B, Piper P W. The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase. Eur J Biochem,1992, 206(3):635-640.
[4] Braley R, Piper P W. The C-terminus of yeast plasma membrane H+-ATPase is essential for the regulation of this enzyme by heat shock protein Hsp30, but not for stress activation. FEBS Lett, 1997, 418(1-2):123-126.
[5] Regnacq M, Boucherie H. Isolation and sequence of HSP30, a yeast heat-shock gene coding for a hydrophobic membrane protein. Curr Genet, 1993, 23(5-6):435-442.
[6] Kusakabe T, Koga K, Sugimoto Y. Isolation and characterization of cDNA and genomic promoter region for a heat shock protein 30 from Aspergillus nidulans. Biochim Biophys Acta, 1994, 1219(2):555-558.
[7] Iimura Y, Tatsumi K. Structure of genes for Hsp30 from the white-rot fungus Coriolus versicolor and the increase of their expression by heat shock and exposure to a hazardous chemical. Biosci Biotechnol Biochem, 2002, 66(7):1567-1570.
[8] Behzadi E, Behzadi P, Sirmatel F. Identification of 30kDa heat shock protein gene in Trichophyton rubrum. Mycoses, 2009, 52(3):234-238.
[9] Matsushita M, Tada S, Suzuki S, et al. Deletion analysis of the promoter of Aspergillus oryzae gene encoding heat shock protein 30. J Biosci Bioeng, 2009, 107(4):345-351.
[10] Piper P W, Ortiz-Calderon C, Holyoak C, et al. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperones, 1997, 2(1):12-24.
[11] Piper P W, Talreja K, Panaretou B, et al. Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology, 1994, 140 ( Pt 11):3031-3038.
[12] Do J H, Yamaguchi R, Miyano S. Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model. BMC Genomics, 2009, 10:306.
[13] Seymour I J, Piper P W. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology, 1999, 145 ( Pt 1):231-239.
[14] Shalev A, Valasek L, Pise-Masison C A, et al. Saccharomyces cerevisiae protein Pci8p and human protein eIF3e/Int-6 interact with the eIF3 core complex by binding to cognate eIF3b subunits. J Biol Chem, 2001, 276(37):34948-34957.
[15] Galeote V A, Alexandre H, Bach B, et al. Sfl1p acts as an activator of the HSP30 gene in Saccharomyces cerevisiae. Curr Genet, 2007, 52(2):55-63.
[16] Thakur S, Chakrabarti A. Saccharomyces cerevisiae Hsp30 is necessary for homeostasis of a set of thermal stress response functions. J Microbiol Biotechnol, 2010, 20(2):403-409.
[17] Machida M. Progress of Aspergillus oryzae genomics. Adv Appl Microbiol, 2002, 51:81-106.
[18] Minetoki T, Gomi K, Kitamoto K, et al. Characteristic expression of three amylase-encoding genes, agdA, amyB, and glaA in Aspergillus oryzae transformants containing multiple copies of the agdA gene. Biosci Biotechnol Biochem, 1995, 59(12):2251-2254.
[19] Ishida H, Hata Y, Kawato A, et al. Improvement of the glaB promoter expressed in solid-state fermentation (SSF) of Aspergillus oryzae. Biosci Biotechnol Biochem, 2006, 70(5):1181-1187.
[20] Ishida H, Matsumura K, Hata Y, et al. Establishment of a hyper-protein production system in submerged Aspergillus oryzae culture under tyrosinase-encoding gene (melO) promoter control. Appl Microbiol Biotechnol, 2001, 57(1-2):131-137.
[21] Kitamoto N, Matsui J, Kawai Y, et al. Utilization of the TEF1-alpha gene (TEF1) promoter for expression of polygalacturonase genes, pgaA and pgaB, in Aspergillus oryzae. Appl Microbiol Biotechnol, 1998, 50(1):85-92.
[22] Faergemann J, Correia O, Nowicki R, et al. Genetic predisposition-understanding underlying mechanisms of onychomycosis. J Eur Acad Dermatol Venereol, 2005, 19 Suppl 1:17-19.
[23] Maranhao F C, Paiao F G, Martinez-Rossi N M. Isolation of transcripts over-expressed in human pathogen Trichophyton rubrum during growth in keratin. Microb Pathog, 2007, 43(4):166-172.
[24] Fedorova N D, Khaldi N, Joardar V S, et al. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet, 2008, 4(4):e1000046.

[1] LIN Yan-mei,LUO Xiang,LI Rui-jie,QIN Xiu-lin,FENG Jia-xun. Probing the Role of N-glycosylation on the Catalytic Domain in the Activity and Secretion of Fungal Cellobiohydrolase[J]. China Biotechnology, 2021, 41(4): 18-29.
[2] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[3] WU Guo-guo,SONG Shu-ting,YUE Rong,ZHANG Jing,GUAN Ying,WANG Yue,LIU Bao-ai,LV Xue-min,WEI Jian-jun,ZHANG Hui-tu. Application of Counterseletable Gene upp in Genetic Manipulation of Streptomyces fungicidicus[J]. China Biotechnology, 2019, 39(11): 78-86.
[4] LAI Ya-peng, DENG Ting-ting, LIU Gang, WANG Juan. The Influence of Homologous Overexpression of BglR on β-glucosidase Activities in Myceliophthora thermophila[J]. China Biotechnology, 2017, 37(7): 64-71.
[5] LV Shan-shan, HOU Yun-hua, YAN Meng-jie, ZHONG Yao-hua. Recent Progress in Mutagenesis Strategies and High-yielding Mechanism for Enzyme Production in Industrial Fungi[J]. China Biotechnology, 2016, 36(3): 111-119.
[6] REN Qin, GUO Zhi-hong, WANG Ya-jun, XIE Zhong-kui, WANG Ruo-yu. RNA Interference and Its Application in Enhancing Crop Resistance Against Harmful Eukaryotes[J]. China Biotechnology, 2015, 35(6): 80-89.
[7] SUN Huan, JIA HAI-yang, FENG XU-dong, LIU Yue-qin, LI Chun. Screening of Heat-resistant Device in Saccharomyces cerevisiae[J]. China Biotechnology, 2015, 35(3): 75-83.
[8] HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens[J]. China Biotechnology, 2014, 34(5): 66-74.
[9] FANG Hua, LI Hao. The Roles of Trehalose and Heat Shock Proteins for Enhancing Ethanol Tolerance of Saccharomyces cerevisiae[J]. China Biotechnology, 2014, 34(06): 84-89.
[10] HUANG Fen, AN Xiao-ping, LI Chun, HE Zhang-hua, ZHANG Bao-zhong, MI Zhi-qiang, WANG Juan, TONG Yi-gang. Overexpression of Heat Shock Protein70 Enhances Production of Antibody in Chinese Hamster Ovary Cells[J]. China Biotechnology, 2011, 31(9): 8-13.
[11] LI Rong-feng, YU Hua-hua, XING Rong-e, LIU Song, LI Peng-cheng. Isolation and Identification of Heat Shock Protein 60(Hsp60) from the Nematocyst of Jellyfish Cyanea nozakii Kishinouye[J]. China Biotechnology, 2011, 31(10): 35-38.
[12] SUN Yun-xiao, LU Yong, LI Zhu-fang, XU Qiang, LIU Xiao-ming, LI Tai-ming, LIU Jing-jing. Immunology Effects of Anti-atherosclerosis Protein Vaccines Based on Heat Shock Protein 65[J]. China Biotechnology, 2011, 31(01): 12-18.
[13] HUANG Yin-Xia, WEI Yang-Jie, CUI Chuan-Jue, ZHANG Xiao-Ling, LI Jun. Tumor necrosis factor-a-induced expression of heat shock protein 70 in Neonatal rat ventricular cardiomyocytes[J]. China Biotechnology, 2010, 30(09): 1-6.
[14] CENG Wei-Jun, WANG Shui-Beng, LI Xiao-Fang, XU Ping, WANG Rui-Gang. A Set of Genes Up-regulated by Cadmium Ions and Their Function under Cadmium Stress in Arabidopsis thaliana[J]. China Biotechnology, 2010, 30(05): 49-56.
[15] XU Liang-Liang, HOU Yong-Hui, JU Jiang-Yang. Study of Dominant-positive Heat Shock Factor 1 on 6-OHDA-induced Apoptosis[J]. China Biotechnology, 2010, 30(01): 25-27.