Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (5): 60-65    DOI: 10.13523/j.cb.20140508
    
Expression of Fusion Protein ES-Kringle5 and Its Purification and Biological Analysis
CHEN Yue, FU Zhong-ping, LI Jing-rong, YIN Xiao-jin
Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing 210042, China
Download: HTML   PDF(605KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To express recombinant ES-Kringle5 fusion protein in prokaryotic cells, purify and identify the bioactivity of expressed product. Method:The nucleotide sequence encoding the 27-amino-acid peptide corresponding to the NH2-terminal domain of endostatin and Kringle 5 via a peptide linker were synthesized and inserted to pMD18-T, then the sequence cloned into vector pET25b. And this recombinant plasmid was transformed to E.coli BL21(DE3) for expression by lactose induction. The expression product was purified by Ni-NTA. The abilities of ES-Kringle 5 to inhibit the proliferation of HUVECs was used for its biological activity assay. Results: The ES-Kringle5 coding sequence was correctly cloned into pET-25b vector. Use lactose and lower the induction temperature can increase the expression level and soluble protein expression. The recombinant protein reached a purity of more than 95% after purification. Bioactivity assay result shows that ES-Kringle5 could inhibit the proliferation of HUVECs. Conclusion:The recombinant ES-Kringle5 fusion protein was successfully expressed in E.coli with high biological activity, which lay the material foundation for its pharmacology study in vivo.



Key wordsProkaryotic expression      Antiangiogenesis      Antitumor      Kringle5      Endostatin     
Received: 13 March 2014      Published: 25 May 2014
ZTFLH:  Q782  
Cite this article:

CHEN Yue, FU Zhong-ping, LI Jing-rong, YIN Xiao-jin. Expression of Fusion Protein ES-Kringle5 and Its Purification and Biological Analysis. China Biotechnology, 2014, 34(5): 60-65.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140508     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I5/60


[1] Folkman J. Tumor angiogenesis : therapeutic implications. N Engl J Med,1971,285 (21) : 1182 - 1186.

[2] Folkman J. Antiangiogenesis in cancer therapy endostatin and its mechanisms of action. Experi mental Cell Research,2006,312 : 594-607.

[3] Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev,2004,25(4) : 581-611.

[4] O'Reilly M S,Hohngren L,Shing Y,et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastase by a Lewis lung carcinoma. Cell,1994,79(2) : 315-328.

[5] Sottile J. Regulation of angiogenesis by extracellular matrix. Biochinl Biophys Acta,2004,1654(1) : 13-22.

[6] O'Reilly M S,Boehm T. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell,1997,8 : 277-285.

[7] Yumi Y,Mohanraj D,Arjan W G,et al. Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. Cancer Res,2000,60 : 2190-2196.

[8] Frank A S,Anthony C,Smith R,et al. Statin-AE: A novel angiostatin-endostatin fusion protein with enhanced antiangiogenic and antitumor activity. Angiogenesis,2001,4 : 263-268.

[9] Frank A S,Smith R,Pathak A,et al. Combination angiostatin and endostatin gene transfer induces synergistic antiangiogenic activity in vitro and antitumor efficacy in leukemia and solid tumors in mice. Molecular Therapy,2001,3(2) : 186-196.

[10] Chen J S,Hwang J C,Chang L C,et al. Attributes of antiangiogenic factor plasminogen kringle 5 in glomerulonephritis. Arch Pathol Lab Med,2010,134(12) : 1804-1812.

[11] Li C,Li L,Cheng R,et al. Acidic/neutral amino acid residues substitution in NH2 terminal of plasminogen Kringle 5 exerts enhanced effects on corneal neovascularization. Cornea,2013,32(5) : 680-688.

[12] Robert M T,Ronit S F,Amy E B,et al. A 27-Amino-Acid Synthetic Peptide Corresponding to the NH2-Terminal Zinc-Binding Domain of Endostatin Is Responsible for Its Antitumor Activity. Cancer Res,2005,65(9) : 3656-63.

[13] Folkman J. Antiangiogenesis in cancer therapy—endostatin and its mechanisms of action. Exp Cell Res,2006,312 (5) : 594-607.

[14] Kashi J,Lee T Y,Robert M,et al. Two endogeneous antiangiogenic inhibitors, endostatin and angiostatin, demonstrate biphasic curves in their antitumor profiles. Dose-Response,2011,9 : 369-376.

[15] 王琪,李嘉姝,程莉莉. 抗血管生成与肿瘤治疗. 检验医学与临床,2012,9(1) : 56-58. Wang Q, Li J S, Cheng L L. Antiangiogenesis and tumor therapeutics. Labortory Medicine and Clinic,2012,9(1) : 56-58.

[16] Zhu D G,Su W,Jin G S,et al. Glioma stem cells targeted by oncolytic virus carrying endostatin-angiostatin fusion gene and the expression of its exogenous gene in vitro. Brain Research,2011,59-69.

[17] Zhang W,Fulci G L,Wakimoto H,et al. Combination of oncolytic herpes simplex viruses armed with angiostatin and IL-12 enhances antitumor efficacy in human glioblastoma models. Neoplasia,2013,15 : 591-599.

[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[3] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[4] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[5] LI Tong-tong,SONG Cai-ling,YANG Kai-yue,WANG Wen-jing,CHEN Hui-yu,LIU Ming. Preparation and Neutralization Activity of Anti-Canine Parvovirus VP2 Protein Single-chain Antibody[J]. China Biotechnology, 2020, 40(4): 10-16.
[6] CHEN Qiu-li,YANG Li-chao,LI Hui,WEN Sha,LI Gang,HE Min. Prokaryotic Expression,Purification and Preparation of Polyclonal Antibody of Human Nek2 Protein[J]. China Biotechnology, 2020, 40(3): 31-37.
[7] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[8] Ming-ying LI,Ren-jun WANG,Fun ZHANG,Yan CHI. The Prokaryotic Expression and Activity Analysis of the Fifth Domain of β2GPⅠ and Its Mutants or Short Peptide Fragments[J]. China Biotechnology, 2018, 38(8): 1-9.
[9] Xiao-lu GUO,Xiu-fang GONG,Jia-feng CHEN,Chen-xi DING,Dan HU,Xiu-zhen PAN,Chang-jun WANG. Gene Cloning, Expression and Identification of Phosphoglyceric Kinase of Streptococcus suis Serotype 2[J]. China Biotechnology, 2018, 38(3): 16-23.
[10] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.
[11] HE Ya-nan,SUN Yu-liang,REN Ya-kun,LIANG Sheng-ying,YANG Fen,LIU Yan-li,LIN Jun-tang. The Construction and Functional Analysis of Staphylococcal Enterotoxin-like K and GFP Fusion Protein[J]. China Biotechnology, 2018, 38(12): 14-20.
[12] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[13] SUN Wen-jia, YAO Yu-feng, YANG Xu, HUANG Wei-wei, LIU Cun-bao, LONG Qiong, CHU Xiao-jie, MA Yan-bing. Presentation of HPV 16L1 Peptide-based HBcAg Virus-like Particle and Induction of Specific Antibody[J]. China Biotechnology, 2017, 37(3): 58-64.
[14] TUERXUN Zulipiye, CAO Chun-bao, WEN Hao, DING Jian-bing, YIMITI Delixiati. Analysis of Gene Evolution, Protein Expression and Identification of Echinococcus granulosus EgG1Y162[J]. China Biotechnology, 2016, 36(4): 78-87.
[15] LEI Liang huan, HUANG Tong long, WEI Hui, LIAO Ji yan, WU Yu jing, ZHOU Cai, XIA Li qiu, ZHANG You ming. Screening, Identification and Antitumor Activity of Myxococcus stipitatus STXZ77[J]. China Biotechnology, 2016, 36(11): 7-15.