Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (08): 87-93    DOI:
    
Advance in Studies of Animal-borne Lysozyme
ZHANG Peng1,2, JIANG Ming-feng1,2, WANG Yong 1
1. Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Chengdu 610041, China;
2. College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
Download: HTML   PDF(527KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Lysozyme is a kind of muramidases that widespread in the animal in vivo, and can catalyze the hydrolysis of β-1,4-glycosidic bonds between the N-acetylglucosamine and N-acetylmuramic acid in the peptidoglycan layer of bacterial cell walls. It has functions of the digestion and decomposition of bacteria, and inhibition of exogenous microbial growth, and enhancing immunity; and lysozyme has been a model protein for research in the function and the nature of the enzyme, and molecular evolution. Firstly, the lysozyme and its crystal structure and the advance in studies of lysozyme gene and its protein were introduced. Secondly, the functions of animal-borne lysozyme, including the biological functions of lysozyme and functional activities of recombinant proteins were introduced too,then the applied researches in lysozyme gene in transgenic engineering were focused on. Finally, the perspectives of animal-borne lysozyme were suggested. It’s very significant to research the animal-borne lysozyme because it’s helpful to understand the basic knowledge and to use it in the production.

Key wordsLysozyme      Crystal      Protein function      Recombinant protein      Transgenic     
Received: 15 May 2012      Published: 25 August 2012
ZTFLH:  Q819  
Cite this article:

ZHANG Peng, JIANG Ming-feng, WANG Yong. Advance in Studies of Animal-borne Lysozyme. China Biotechnology, 2012, 32(08): 87-93.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I08/87

[1] Fleming A. On a remarkable bacteriolytic element found in tissues and secretions. Proceedings of the Royal Society B: Biological Sciences, 1922, 93:306-317.
[2] Blake C C, Koening D F, Mair G A, et al. Structure of hen egg-white lysozyme: a three-dimensional fourier synthesis at 2  resolution. Nature, 1965, 206(986):757-761.
[3] Lapcharoen P, Komalamisra N, Rongsriyam Y, et al. Investigations on the role of a lysozyme from the malaria vector Anopheles dirus during malaria parasite development. Dev Comp Immunol, 2012, 36(1):104-111.
[4] Kaizu A, Fagutao F F, Kondo H, et al. Functional analysis of C-type lysozyme in penaeid shrimp. J Biol Chem, 2011, 286(52):44344-44349.
[5] Peregrino-Uriarte A B, Muhlia-Almazan A T, Arvizu-Flores A A, et al. Shrimp invertebrate lysozyme i-lyz: gene structure, molecular model and response of c and i lysozymes to lipopolysaccharide (LPS). Fish Shellfish Immunol, 2012, 32(1):230-236.
[6] Fiolka M J, Zagaja M P, Hulas-Stasiak M, et al. Activity and immunodetection of lysozyme in earthworm Dendrobaena veneta (Annelida). J Invertebr Pathol, 2012, 109(1):83-90.
[7] He C, Yu H, Liu W, et al. A goose-type lysozyme gene in Japanese scallop (Mizuhopecten yessoensis): cDNA cloning, mRNA expression and promoter sequence analysis. Comp Biochem Physiol B Biochem Mol Biol, 2012, 162(1-3):34-43.
[8] Ding J, Li J, Bao Y, et al. Molecular characterization of a mollusk chicken-type lysozyme gene from Haliotis discus hannai Ino, and the antimicrobial activity of its recombinant protein. Fish Shellfish Immunol, 2011, 30(1):163-172.
[9] Yue X, Liu B, Xue Q. An i-type lysozyme from the Asiatic hard clam Meretrix meretrix potentially functioning in host immunity. Fish Shellfish Immunol, 2011, 30(2):550-558.
[10] Zhao L, Sun J S, Sun L. The g-type lysozyme of Scophthalmus maximus has a broad substrate spectrum and is involved in the immune response against bacterial infection. Fish Shellfish Immunol, 2011, 30(2):630-637.
[11] Harikrishnan R, Kim J S, Kim M C, et al. Molecular characterization, phylogeny, and expression pattern of c-type lysozyme in kelp grouper, Epinephelus bruneus. Fish Shellfish Immunol, 2011, 31(4):588-594.
[12] Whang I, Lee Y, Lee S, et al. Characterization and expression analysis of a goose-type lysozyme from the rock bream Oplegnathus fasciatus, and antimicrobial activity of its recombinant protein.Fish Shellfish Immunol, 2011, 30(2):532-542.
[13] Ponce M, Salas-Leiton E, Garcia-Cegarra A, et al. Genomic characterization, phylogeny and gene regulation of g-type lysozyme in sole (Solea senegalensis). Fish Shellfish Immunol, 2011, 31(6):925-937.
[14] Sha Z X, Wang Q L, Liu Y, et al. Identification and expression analysis of goose-type lysozyme in half-smooth tongue sole (Cynoglossus semilaevis). Fish Shellfish Immunol, 2012, 32(5):914-921.
[15] Maehashi K, Matano M, Irisawa T, et al. Molecular characterization of goose-and chicken-type lysozymes in emu (Dromaius novaehollandiae): Evidence for extremely low lysozyme levels in emu egg white. Gene, 2012, 492(1):244-249.
[16] Kawamura S, Toshima G, Chijiiwa Y, et al. Amino acid sequence of Egyptian goose egg-white lysozyme and effects of amino acid substitution on the enzymatic activity. Biosci Biotechnol Biochem, 2012, 76(4):691-698.
[17] Lhyam Myint S, Kinoshita K, Shimogiri T, et al. Effect of polymorphism in egg white lysozyme on muramidase and antibacterial activities as well as hatchability in the Japanese quail (Coturnix japonica). J Anim Sci, 2012,90(6):1747-1755.
[18] Nonaka Y, Akieda D, Aizawa T, et al. X-ray crystallography and structural stability of digestive lysozyme from cow stomach. FEBS J, 2009, 276(8):2192-2200.
[19] Irwin D M. Evolution of cow nonstomach lysozyme genes. Genome, 2004, 47(6):1082-1090.
[20] Jiang M, Chen Y, Wang Y, et al. Yak(Bos Grunniens)stomach lysozyme: molecular cloning, expression and its antibacterial activities. Anim Biotechnol, 2010, 21(1):25-35.
[21] Nyachoti C M, Kiarie E, Bhandari S K, et al. Weaned pig responses to Escherichia coli K88 oral challenge when receiving a lysozyme supplement. J Anim Sci, 2012, 90(1):252-260.
[22] Cancado F C, Chimoy Effio P, Terra W R, et al. Cloning, purification and comparative characterization of two digestive lysozymes from Musca domestica larvae. Braz J Med Biol Res, 2008, 41(11):969-977.
[23] Sung K, Khan S A, Nawaz M S, et al. Lysozyme as a barrier to growth of Bacillus anthracis strain sterne in liquid egg white, milk and beef. Food Microbiol, 2011, 28(6):1231-1234.
[24] Maga E A, Shoemaker C F, Rowe J D, et al. Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland. J Dairy Sci, 2006, 89(2):518-524.
[25] Liu S, Li X, Lu D, et al. High-level expression of bioactive recombinant human lysozyme in the milk of transgenic mice using a modified human lactoferrin BAC. Transgenic Res, 2012, 21(2):407-414.
[26] Maga E A, Cullor J S, Smith W, et al.Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodborne Pathog Dis, 2006, 3(4):384-392.
[27] Maga E A, Walker R L, Anderson G B, et al. Consumption of milk from transgenic goats expressing human lysozyme in the mammary gland results in the modulation of intestinal microflora. Transgenic Res, 2006, 15(4):515-519.
[28] Cooper C A, Brundige D R, Reh W A, et al. Lysozyme transgenic goats’ milk positively impacts intestinal cytokine expression and morphology. Transgenic Res, 2011, 20(6):1235-1243.
[29] Brundige D R, Maga E A, Klasing K C, et al. Lysozyme transgenic goats’ milk influences gastrointestinal morphology in young pigs. J Nutr, 2008, 138(5):921-926.
[30] Brundige D R, Maga E A, Klasing K C, et al. Consumption of pasteurized human lysozyme transgenic goats’ milk alters serum metabolite profile in young pigs. Transgenic Res, 2010, 19(4):563-574.
[31] Swaminathan R, Ravi V K, Kumar S, et al. Lysozyme: a model protein for amyloid research. Adv Protein Chem Struct Biol, 2011, 84:63-111.
[32] Sugimoto Y, Kamada Y, Tokunaga Y, et al. Aggregates with lysozyme and ovalbumin show features of amyloid-like fibrils. Biochem Cell Biol, 2011, 89(6):533-544.
[33] Sassi P, Giugliarelli A, Paolantoni M, et al. Unfolding and aggregation of lysozyme: a thermodynamic and kinetic study by FTIR spectroscopy. Biophys Chem, 2011, 158(1):46-53.
[1] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[2] CHEN Xin-yi,LIU Hu,DAI Da-zhang,LI Chun. Strategies to Improve Crystallizability of Glycosylated Enzyme[J]. China Biotechnology, 2020, 40(3): 154-162.
[3] ZHU Tong-tong,YANG Lei,LIU Ying-bao,SUN Wen-xiu,ZHANG Xiu-guo. Purification and Crystallization of PcCRN20-C from Phytophthora capsici[J]. China Biotechnology, 2020, 40(1-2): 116-123.
[4] LIANG Zhen-xin,LIU Fang,ZHANG wei,LIU Qing-you,LI Li. The Preparation and Validation of p185 erb B2 Human-mouse Chimeric Antibody ChAb26 Transgenic Mice Mammary Gl and Bioreactor[J]. China Biotechnology, 2019, 39(8): 40-51.
[5] JING Jia-mei,XUN Xin,WANG Min,PENG Ru-chao,SHI Yi. Expression and Purification of C-terminal of Arenavirus Polymerase and Screening of Crystallization Conditions[J]. China Biotechnology, 2019, 39(12): 18-23.
[6] WANG You-hua,ZOU Wan-nong,LIU Xiao-qing,WANG Zhaohua,SUN Guo-qing. Global Patent Analysis and Technology Prospect of Genetically Modified Maize[J]. China Biotechnology, 2019, 39(12): 83-94.
[7] YANG Fei-yun,YANG Tian-rui,LIU Kun,CUI Shuang,WANG Rui-gang,LI Guo-jing. Flavonoids Metabolism and Antimicrobial Activity of Arabidopsis Heterologous Expressing CiRS Gene[J]. China Biotechnology, 2019, 39(11): 22-30.
[8] CHEN Xiu-xiu,WU Cheng-lin,ZHOU Li-jun. Research Progress in Preparation and Clinical Application of Therapeutic Human Antibodies[J]. China Biotechnology, 2019, 39(10): 90-96.
[9] Chao-di TONG,Jian-ping WU,Li-rong YANG,Gang XU. Crystal Structural Analysis of DehDIV-R by X-ray Crystallography[J]. China Biotechnology, 2018, 38(8): 19-25.
[10] Ming-ming HAN,Yu-ping LUO. Establishment and Identification of Endogenous CD133 + Cell Tracer Mouse Model[J]. China Biotechnology, 2018, 38(6): 58-62.
[11] Min YAO,Shu-hua ZHU,Fo-sheng LI,Shi-yan ZHANG,Lin TANG. Analysis of Salt Tolerance and Insect Resistance of Transgenic Tobacco Expressing AtCYSa from Arabidopsis[J]. China Biotechnology, 2018, 38(4): 8-16.
[12] Peng HUANG,Wang-chun DU,Wei-jun SHI,Yu-liang RAO,Qing-wen SUN,Ning ZHANG. The Functional Studies of Human Lysozyme-like Protein 6 and Characterization of Its Physiological Properties[J]. China Biotechnology, 2018, 38(3): 1-8.
[13] Peng HUANG,Li-ping YAN,Ning ZHANG,Jin-lei SHI. Constitutive Expression of Human Goose-type Lysozyme 2 in Pichia pastoris Using the GAP Promoter[J]. China Biotechnology, 2018, 38(10): 55-63.
[14] WANG Pei, CHEN Kai, GAO Song. Production of Restriction Endonuclease Not I Utilizing CpG DNA Methylase M.Sss I Co-expression Vector[J]. China Biotechnology, 2017, 37(8): 51-58.
[15] FENG Xue, GAO Xiang, NIU Chun-qing, LIU Yan. Construction of Pichia pastoris Expression Vector of Codon Optimized αB-crystallin Gene and Expression Optimization[J]. China Biotechnology, 2017, 37(7): 42-47.