Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (07): 120-126    DOI:
    
Advances of The Protection of Telomeres 1
CHENG Ling-li, ZHU Da-zhu, HUANG Di-nan, HOU Gan
Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang 524023, China
Download: HTML   PDF(680KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  POT1 (protection of telomere 1) was found in unicellular organisms by Baumann in 2001, which have been identified and expressed highly conserved in a wide range of eukaryotes.It plays pivotal roles in protection of chromosome end and regulation of telomere length with other telomeric binding proteins. With the advances of POT1, the mechanisms have being gradually completed due to the new founds in the DNA binding feature of POT1 and chromosome end protection. Furthermore, the ways in which POT1 regulates telomere length has been found being more complex; and how POT1 allows the cell immortalization and promotes tumor progression and induces cell apoptosis have been more clear.As reference recent journals, the article summarizes the functions of POT1 proteins and discusses the interaction with other related proteins.

Key wordsProtection of telomere      Telomere      Telomerase      Shelterin complex     
Received: 12 March 2012      Published: 25 July 2012
ZTFLH:  Q71  
Cite this article:

CHENG Ling-li, ZHU Da-zhu, HUANG Di-nan, HOU Gan. Advances of The Protection of Telomeres 1. China Biotechnology, 2012, 32(07): 120-126.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I07/120

[1] Choi K H, Farrell A S, Lakamp A S, et al. Characterization of the DNA binding specificity of Shelterin complexes. Nucleic Acids Res, 2011, 39(21): 9206-9223.
[2] Altschuler S E, Dickey T H, Wuttke D S. Schizosaccharomyces pombe protection of telomeres 1 utilizes alternate binding modes to accommodate different telomeric sequences. Biochemistry, 2011, 50(35): 7503-7513.
[3] Croy J E, Altschuler S E, Grimm N E, et al. Nonadditivity in the recognition of single-stranded DNA by the schizosaccharomyces pombe protection of telomeres 1 DNA-binding domain, Pot1-DBD Biochemistry. 2009,48(29): 6864-6875.
[4] Nandakumar J, Cech T R. DNA-induced dimerization of the single-stranded DNA binding telomeric protein Pot1 from Schizosaccharomyces pombe. Nucleic Acids Res, 2012, 40(1): 235-244.
[5] Nandakumar J, Podell E R, Cech T R. How telomeric protein POT1 avoids RNA to achieve specificity for single-stranded DNA. Proc Natl Acad Sci USA, 2010, 107(2): 651-656.
[6] Kibe T, Osawa G A, Keegan C E, et al. Telomere protection by TPP1 is mediated by POT1a and POT1b. Mol Cell Biol, 2010, 30(4): 1059-1066.
[7] Hockemeyer D, Palm W, Else T, et al. Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nat Struct Mol Biol, 2007, 14(8): 754-761.
[8] Xin H, Liu D, Wan M, et al. TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature, 2007, 445(7127): 559-562.
[9] Liu D, Safari A, O’Connor M S, et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol, 2004, 6(7):673-680.
[10] Takai K K, Kibe T, Donigian J R, et al. Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell, 2011, 44(4): 647-659.
[11] Taylor D J, Podell E R, Taatjes D J, et al. Multiple POT1-TPP1 proteins coat and compact long telomeric single-stranded DNA. J Mol Biol, 2011, 410(1): 10-17.
[12] de Lange T. How telomeres solve the end-protection problem. Science, 2009, 326(5955): 948-952.
[13] Loayza D, Parsons H, Donigian J, et al. DNA binding features of human POT1. J Biol Chem, 2004, 279(13): 13241-13248.
[14] Bunch J T, Bae N S, Leonardi J, et al. Distinct requirements for Pot1 in limiting telomere length and maintaining chromosome stability. Mol Cell Biol, 2005, 25(13): 5567-5578.
[15] Pitt C W, Cooper J P. Pot1 inactivation leads to rampant telomere resection and loss in one cell cycle. Nucleic Acids Res, 2010, 38(20): 6968-6975.
[16] Churikov D, Price C M. Pot1 and cell cycle progression cooperate in telomere length regulation. Nat Struct Mol Biol, 2008, 15(1): 79-84.
[17] Litman Flynn R, Chang S, Zou L. RPA and POT1: Friends or foes at telomeres? Cell Cycle, 2012,11(4): 652-657.
[18] Flynn R L, Centore R C, O’Sullivan R J, et al. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature, 2011, 471(7339): 532-536.
[19] Gong Y, de Lange T. A Shld1-controlled POT1a provides support for repression of ATR signaling at telomeres through RPA exclusion. Mol Cell. 2010, 40(3): 377-387.
[20] Rai R, Li J M, Zheng H, et al. The E3 ubiquitin ligase Rnf8 stabilizes Tpp1 to promote telomere end protection. Nat Struct Mol Biol, 2011, 18(12): 1400-1407.
[21] Sheppard S A, Loayza D. LIM-domain proteins TRIP6 and LPP associate with shelterin to mediate telomere protection. Aging (Albany NY). 2010, 2(7): 432-444.
[22] Wang F, Podell E R, Zaug A J, et al. The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature, 2007, 445(7127): 506-510.
[23] Latrick C M, Cech T R. POT1-TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. EMBO J, 2010, 29(5): 924-933.
[24] Zaug A J, Podell E R, Nandakumar J, et al. Functional interaction between telomere protein TPP1 and telomerase. Genes Dev, 2010, 24(6): 613-622.
[25] Abreu E, Aritonovska E, Reichenbach P, et al. TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Mol Cell Biol, 2010, 30(12): 2971-2982.
[26] Zaug A J, Podell E R, Cech T R. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc Natl Acad Sci U S A, 2005, 102(31): 10864-10869.
[27] Lei M, Zaug A J, Podell E R, et al. Switching human telomerase on and off with hPOT1 protein in vitro. J Biol Chem, 2005, 280(21): 20449-20456.
[28] Possemato R, Timmons J C, Bauerlein E L, et al. Suppression of hPOT1 in diploid human cells results in an hTERT-dependent alteration of telomere length dynamics. Mol Cancer Res, 2008, 6(10): 1582-1593.
[29] Gao J, Zhang J, Long Y, et al. Expression of telomere binding proteins in gastric cancer and correlation with clinicopathological parameters. Asia Pac J Clin Oncol, 2011, 7(4): 339-345.
[30] Fujii K, Sasahira T, Moriwaka Y, et al. Protection of telomeres 1 protein levels are associated with telomere length in gastric cancer. Int J Mol Med, 2008, 21(5): 599-604.
[31] Wan S M, Tie J, Zhang Y F, et al. Silencing of the hPOT1 gene by RNA inference promotes apoptosis and inhibits proliferation and aggressive phenotype of gastric cancer cells, likely through up-regulating PinX1 expression. J Clin Pathol, 2011, 64(12): 1051-1057.
[32] Ning X, Yang S, Wang R, et al. POT1 deficiency alters telomere length and telomere-associated gene expression in human gastric cancer cells. Eur J Cancer Prev, 2010, 19(5): 345-351.
[33] Xiao N, Chen S, Ma Y, et al. Interaction of Berberine derivative with protein POT1 affect telomere function in cancer cells. Biochem Biophys Res Commun. 2012, 419(3): 567-572.
[34] Kojima K, Hiyama E, Otani K, et al. Telomerase activation without shortening of telomeric 3'-overhang is a poor prognostic factor in human colorectal cancer. Cancer Sci, 2011, 102(2): 330-335.
[35] Varadi V, Brendle A, Brandt A, et al. Polymorphisms in telomere-associated genes, breast cancer susceptibility and prognosis. Eur J Cancer, 2009, 45(17): 3008-3016.
[36] Shen J, Gammon M D, Wu H C, et al. Multiple genetic variants in telomere pathway genes and breast cancer risk. Cancer Epidemiol Biomarkers Prev, 2010, 19(1): 219-228.
[1] Yuan FAN,Jia LUO,Mai-lin GAN,Ya TAN,Shun-hua ZHANG,Li ZHU. The Research Advance of Long Non-coding RNA TERRA[J]. China Biotechnology, 2018, 38(10): 64-73.
[2] . Quantitative Analysis for Telomerase Activtity in Rice[J]. China Biotechnology, 2007, 27(5): 45-49.
[3] . Senescence and Telomere Shorten of Goat Gene-Transfected Cells[J]. China Biotechnology, 2006, 26(06): 45-49.