Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (07): 66-72    DOI:
    
Optimization of Single Cell Oil Produced from Cassava Starch by Response Surface Methodology
AI Zuo-zuo1, YAN Ri-ming1, YUAN Jin-yun1, ZHANG Zhi-bin1, ZHU Du1,2
1. Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China;
2. Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun 336000, China
Download: HTML   PDF(1264KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Response surface methodology was applied to optimize the Trichosporon fermentans fermentation conditions for microbial lipids produced from hydrolysate of cassava starch. The Plackeet-Burman design was adopted to sort the important factors influencing the lipids yield, and the conditions of lipids production was further optimized by using Box-Behnken design and response surface methodology. The results showed that the temperature, C/N and pH could influence on the lipid yield significantly. The optimized conditions for lipid production were temperature of 28.79℃, C/N of 126.18 and pH of 6.69, and the lipids yield of 14.88g/L which was 28.6% higher than control. Moreover, gas chromatography analysis revealed that the microbial lipid from Trichosporon fermentans mainly included palmitic acid, stearic acid, oleic acid and linoleic acid and it was suggested to be used as an excellent feedstock for biodiesel production.

Key wordsCassava starch      Response surface methodology      Microbial lipids      Condition optimization      Trichosporon fermentans     
Received: 06 March 2012      Published: 25 July 2012
ZTFLH:  Q815  
Cite this article:

AI Zuo-zuo, YAN Ri-ming, YUAN Jin-yun, ZHANG Zhi-bin, ZHU Du. Optimization of Single Cell Oil Produced from Cassava Starch by Response Surface Methodology. China Biotechnology, 2012, 32(07): 66-72.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I07/66

[1] Subramaniam R, Dufreche S, Zappi M, et al. Microbial lipids from renewable resources: production and characterization. Journal of Industrial Microbiology & Biotechnology, 2010, 37(12):1271-1287.
[2] Li Q, Du W, Liu D H. Perspectives of microbial oils for biodiesel production. Applied Microbiol Biotechnology, 2008, 80(5):749-756.
[3] 方佳, 濮文辉, 张慧坚. 国内外木薯产业发展近况. 中国农学通报, 2010, 26(16):353-361. Fang J, Pu W H, Zhang H J. The development status of cassava industry at home and abroad. Chinese Agricultural Science Bulletin, 2010, 26(16): 353-361.
[4] Jansson C, Westerbergh A, Zhang J, et al. Cassava, a potential biofuel crop in (the) People’s Republic of China. Appl Energ, 2009, 86:S95-S99.
[5] Wei A L, Zhang X W, Wu Q Y, et al. Effects of cassava starch hydrolysate on cell growth and lipid accumulation of heterotrophic microalgae Chlorella protothecoides. J Ind Microbiol Biotechnol, 2009, 36:1383-1389.
[6] Lu Y, Ding Y, Wu Q Y. Simultaneous saccharification of cassava starch and fermentation of algae for biodiesel production. J Appl Phycol, 2011, 23(1):115-121.
[7] 杨艳婧, 王冰芳, 廖晓霞, 等. 木薯淀粉水解液对小球藻生物量和油脂含量的影响. 现代食品科技, 2009, 25(11):1275-1278. Yang Y J, Wang B F, Liao X X, et al. Effect of cassava starch hydrolysate on cell growth and lipid accumulation of heterophic microalgae Chlorella protothecoides. Modern Food Science and Technology, 2009, 25(11):1275-1278.
[8] Li M, Liu G L, Chi Z, et al. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass and Bioenergy, 2010, 34:101-107.
[9] 袁锦云, 艾佐佐, 朱笃, 等. 皮状丝孢酵母B3利用木薯淀粉发酵生产微生物油脂. 生物工程学报, 2011, 27(3):453-460. Yuan J Y, Ai Z Z, Zhu D, et al. Microbial oil production by Trichosporon cutaneum B3 using cassava starch. Chinese Journal of Biotechnology, 2011, 27(3):453-460.
[10] 李植峰, 张玲, 沈晓京, 等. 四种真菌油脂提取方法的比较研究. 微生物学通报, 2001, 28(6):72-75. Li Z F, Zhang Listen X J, et al. A comparative study on four methods of fungi lipid extraction. Microbiology, 2001, 28(6):72-75.
[11] GB/T 17377-2008, 动植物油脂脂肪酸甲酯的气相色谱分析. GB/T 17377-2008, Animal and vegetable fats and oils—Analysis by gas chromatography of methyl esters of fatty acids.
[12] 张巧艳, 钱俊青. 响应面法优化黄杆菌突变株产脂肪酶摇瓶发酵条件. 浙江工业大学报, 2009, 37(2): 156-160. Zhang Q Y, Qian J Q. Optimization of lipase production conditions by Flavobacterium sp. YY25-H0.5 using response surface methodology. Zhengjiang University of Technology, 2009, 37(2):156-160.
[13] Li C, Bai Z L. Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. Journal of Biotechnology, 2002, 93:27-34.
[14] Box G E P, Behnken D W. Some new three level designs for the study of quantitative variables. Teclmometrics, 1960, 2:455-475.
[15] Li Y G, Xu L, Huang Y M, et al. Microalgal biodiesel in China: Opportunities and challenges. Applied Energy, 2011, 88(10): 3432-3437.
[16] Zhu L Y, Zong M H, Wu H. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresource Technology, 2008, 99(16):7881-7885.
[17] Huang C, Zong M H, Wu H, et al. Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresource Technology, 2009, 100(19):4535-4538.
[18] Xue F Y, Miao J X, Zhang X, et al. Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresource Technology, 2008, 99(13):5923-5927.
[19] Zhao X, Wu S G, Hu C M, et al. Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. Journal of Industrial Microbiology and Biotechnology, 2010, 37: 581-585.
[20] Zhao C H, Zhang T, Li M, et al. Single cell production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochemistry, 2010, 45:1121-1126.
[1] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[2] ZHANG Xu-hui, ZHANG Hong-nan, LI Yong, WANG Wen-qiang. Screening and Identification of Biocontrol Fungi against Didymella bryoniae and Optimization of Fermentation Conditions[J]. China Biotechnology, 2017, 37(5): 76-86.
[3] WANG Ya nan, SHEN Hong wei, YANG Xiao bing, ZHAO Zong bao. Effects of Lipid Production by Rhodosporidium toruloides under Conditions with Limitation of Different Nutrient Elements[J]. China Biotechnology, 2016, 36(11): 16-22.
[4] LI Liang, WANG Ze-jian, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. Mutagenesis Breeding and Optimization of Cephalosporin C by Cephalosporium acremonium[J]. China Biotechnology, 2014, 34(8): 61-66.
[5] HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens[J]. China Biotechnology, 2014, 34(5): 66-74.
[6] ZHANG Qi, NING Xi-bin, ZHANG Ji-lun. Optimization of Cultivation Conditions for Protease Production from Marine Bacteria by Response Surface Methodology[J]. China Biotechnology, 2013, 33(8): 105-110.
[7] WANG Dan, ZHENG Hong-li, JI Xiao-jun, GAO Zhen. Optimization the Accumulation of Astaxanthin in Chlorella Zofingiensis Using Response Surface Methodology[J]. China Biotechnology, 2013, 33(7): 71-81.
[8] ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu. Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis[J]. China Biotechnology, 2013, 33(6): 79-85.
[9] WU Wei-ping, CHEN Jie, LI Ya-qian, CHEN Li-jie, DUAN Yu-xi. Optimization of Fermentation Process for Chlamydospores of Trichoderma asperellum by Response Surface Methodology[J]. China Biotechnology, 2013, 33(12): 97-104.
[10] ZHANG Wen, ZHANG Shu-qing, MA Xiao-tong, HE Cui-cui. The Optimization Research of Fermentation Medium of γ-Polyglutamic Acid(γ-PGA) Produced by Bacillus natto[J]. China Biotechnology, 2013, 33(11): 44-50.
[11] CHEN Jie, WEI Hong-gang, LUO Yuan-chan, ZHANG Dao-jing, LI Shu-lan, TIAN Li, LI Yuan-guang. Medium Optimization for the Production of New Antifungl Cyclic Lipopeptide Marinhysin A by Bacillus Marinus B-9987[J]. China Biotechnology, 2013, 33(1): 84-89.
[12] CHEN Jie-mei, XU Cong-cong, CHANG Lei, LIU Yong-ping, MIAO Bing-xuan. Study on Optimization of Soybean Meal Solid-state Fermentation Process for Producing Soybean Antioxidative Peptide by Response Surface Methodology[J]. China Biotechnology, 2012, 32(12): 59-65.
[13] YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun. Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology[J]. China Biotechnology, 2012, 32(09): 70-75.
[14] WANG Ping, JIANG Mu-lan, ZHANG Yin-bo, WAN Xia, LIANG Zhuo, GONG Yang-min. Construction of a Novel Expression Vector with the Promoter of Phosphoglycerate Kinase Gene and Its Utilization of Heterogenous Gene Expression in Trichosporon fermentans[J]. China Biotechnology, 2012, 32(03): 39-46.
[15] GU Rui-meng, LI Yong-hao, TIAN Chao-guang. The Medium Optimization of Cellulases Fermentation of Neurospora crassa by Response Surface Methodology[J]. China Biotechnology, 2012, 32(03): 76-82.