Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (07): 43-48    DOI:
    
Transformation and Genetic Analysis of Maize with the Lycb
HUO Pei, JI Jing, WANG Gang, GUAN Chun-feng, JIN Chao
School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(820KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Lycb gene was transformed into embryonic callus derived from Tianta Fifth inbred lines by Agrobacterium-mediated transformation, and the independent T0 transformants and their progenies genetics were analyzed. PCR analysis with 27 T0 transformed plants testified 8 positive plantlets. T1 plantlets were selected by 200 mg/L PPT and seeds of the resistance plants were harvested. T2 transgenic plants were analyzed using PCR, RT-PCR, and the results showed that the six positive lines detected were further confirmed to have PPT resistance. HPLC analysis showed the total beta carotene content from transformed leaves was significantly higher than that of the wild type. The results show that the Lycb gene was able to inherit in the T2 progeny, and transcribed and translated effectively.

Key wordsLycopene β-cyclase(Lycb)      Bar      Maize      Transformation      HPLC     
Received: 12 March 2012      Published: 25 July 2012
ZTFLH:  Q78  
Cite this article:

HUO Pei, JI Jing, WANG Gang, GUAN Chun-feng, JIN Chao. Transformation and Genetic Analysis of Maize with the Lycb. China Biotechnology, 2012, 32(07): 43-48.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I07/43

[1] Fraser P D, Bramley P M. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res., 2004, 43(3): 228-265.
[2] Giuliano G, Tavazza R, Diretto G, et al. Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol, 2008, 26(3): 139-145.
[3] Jiang S, Wang C X, Lan L, et al. Vitamin A deficiency aggravates iron deficiency by up regulating the expression of iron regulatory protein-2. Nutrition, 2012, 28(3): 281-287.
[4] Harjes C E, Rocheford T R, Bai L, et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 2008, 319(5861): 330-333.
[5] Amoussa-Hounkpatin W, Mouquet-Rivier C, Dossa R A M, el al. Contribution of plant-based sauces to the vitamin A intake of young children in Benin. Food Chem, 2012, 131(3): 948-955.
[6] Grimsley N, Hohn T, Davis J W, et al. Agrobacterium mediated delivery of infect ious maize streak virus into maize Plants. Nature, 1987, 325(7000): 177-179.
[7] Grimsley N, Ramos C, Hein T, et al. Meristematic tissues of maize Plant sre most susceptible to agromfection with maize streak virus. Bio Technology, 1988, 6(2): 185-189.
[8] Ishida Y, Saito H, et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium Tumefaciens. Nature Biotech, 1996, 14(6): 745-750.
[9] 黄路, 卫志明. 农杆菌介导的玉米遗传转化. 实验生物学报, 1999,32(4):381-387. Huang L, Wei Z M. Agrobacterium tumefaciens mediated maize transformation. Acta Biologiae Experimentalis Sinica,1999,32(4):381-387.
[10] 王雷, 张君, 于彦春, 等. 胚龄和2,4-D浓度对玉米自交系幼胚愈伤组织诱导率的影响. 玉米科学, 2001, 9(3): 26-28. Wang L, Zhang J, Yu Y C, et al. Influence of embryo age and 2,4-D concentration on callus induction ratios in inbred lines of maize. Journal of Maize Sciences, 2001, 9(3): 26-28.
[11] 张艳贞, 魏松红, 胡汉桥, 等. 农杆菌介导的优良玉米自交系遗传转化体系的建立. 沈阳农业大学学报, 2002, 33(3): 195-199. Zhang Y Z, Wei S H, Hu H Q, et al. Establishment of the system of conventional maize inbred-lines transformation mediated by Agrobacterium tumefaciens. Journal of Shenyang Agricultural University, 2002,33(3): 195-199.
[12] 赵云云, 周小梅, 王国英. 玉米幼胚组织培养及其转化的研究. 山西大学学报(自然科学版), 2006, 29(3): 308-312. Zhao Y Y, Zhou X M, Wang G Y. Study on Tissue Culture and Transformation of Maize. Journal of Shanxi University (Natural Science Edition), 2006, 29(6): 308-312.
[13] 袁鹰,李启云, 郝文媛,等. 农杆菌介导玉米遗传转化影响因子的研究. 分子植物育种, 2006, 4(2): 228-232. Yuan Y, Li Q Y, Hao W Y, et al. Studies on Influencing Factors of Agrobacterium tumefaciens Mediated Maize Transformation. Molecular Plant Breeding, 2006, 4(2): 228-232.
[14] Spencer T M, Gordon-Kamm W J, Daines R J, et al. Bialaphos selection of stable transformants from maize cell culture. Theor Appl Genet, 1990, 79(5): 625-631.
[15] 王宏伟, 梁业红, 史振声, 等. 共培养环境对玉米遗传转化的影响. 西北农业学报, 2011,20(9): 40-42. Wang H W, Liang Y H, Shi Z S, et al. Study on Co-culture System to Genetic Transformation of Maize. Acta Agriculturae Boreali-occidentalis Sinica, 2011, 20(9): 40-42.
[16] 杜何为, 许先凤, 黄敏, 等. 硝酸银对玉米幼胚组织培养的影响. 河北农业科学, 2008, 12 (8): 62-63. Du H W, Xu X F, Huang M, et al. Effect of AgNO3 on Tissue Culture of A188 Immature Embryos. Journal of Hebei Agricultural Sciences, 2008,12(8): 62-63.
[17] 李海霞, 秦文娟, 汤继华, 等. 2, 4-D和麦草畏对玉米自交系愈伤组织诱导和继代的影响. 河南农业大学学报, 2010, 44(3):243-248. Li H X, Qin W J, Tang J H, et al. Induction and screening of embryonic callus from immature embryo culture of maize inbred line. Journal of Henan Agricultural University, 2010, 44(3): 243-248.
[18] Ishida Y, Saito H, Hiei Y, et al. High efficiency transformation of Maize(Zea mays L. ) mediated by Agrobacteri-um tumfaciens. Nature Biotechnol, 1996, 14: 745-750.
[19] 攻建, 杨芳. 单子叶植物表达载体的构建及农杆菌介导的玉米遗传转化的研究. 生物技术, 2007, 17(3): 2-5. Gong J, Yang F. Construction of a Monocotyledon Expression Vector and Agrobacterium-mediated Transformation in Maize. Biotechnology, 2007, 17(3): 2-5.
[20] Huang X Q, Wei Z M. High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.). Plant Cell Rep, 2004, 22(11): 793-800.
[21] Busch M, Seuter A, Hain R. Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol, 2002, 128(2): 439-453.
[22] Rosati C, Aquilani R, Dharmapuri S, et al. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J, 2000, 24(3): 413-420.
[23] Lu S, Van Eck J, Zhou X, et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell, 2006, 18(12): 3549-3605.
[1] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[2] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[3] WANG Yi-han,LI Hai-yan,XUE Yong-chang. The Structural Characteristics and Engineering Reconstruction of Flavin-dependent Halogenase[J]. China Biotechnology, 2021, 41(4): 74-80.
[4] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[5] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[6] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[7] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[8] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[9] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[10] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[11] MENG Xiao-lin,PANG Xi-ming,WANG Jie. Agrobacterium-mediated Transformation and the Functions of Pks in Marine-derived Penicillium oxalicum[J]. China Biotechnology, 2020, 40(9): 11-17.
[12] YANG Li,SHI Xiao-yu,LI Wen-lei,LI Jian,XU Han-mei. Optimization of Electroporation Conditions in Construction of Phage Display Antibody Library[J]. China Biotechnology, 2020, 40(4): 42-48.
[13] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[14] WANG You-hua,ZOU Wan-nong,LIU Xiao-qing,WANG Zhaohua,SUN Guo-qing. Global Patent Analysis and Technology Prospect of Genetically Modified Maize[J]. China Biotechnology, 2019, 39(12): 83-94.
[15] Yue-lei FAN,Jiao LU,Da-ming CHEN,Kai-yun MAO. Strategies for Stem Cell Patent Evaluation and Patent Transfer and Transformation[J]. China Biotechnology, 2019, 39(1): 99-106.