Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (03): 110-114    DOI:
    
Research Progress on Banana Genomics and Functional Genomics Involved in Stress Resistance
LIU Ju-hua1, XU Bi-yu1, ZHANG Jian-ping1, JIA Cai-hong1, WANG Jia-shui2, ZHANG Jian-bin1, JIN Zhi-qiang1,2
1. Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
2. Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
Download: HTML   PDF(387KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Banana is one of the most important tropical fruits and the fourth grain crops in the world. The research of banana functional genomics involved in stress resistance has always been the hot spot and core in all banana researches. Novel researches on the banana genome sequencing, isolation and identification of functional genes involved in resistance are reviewed, which will help us to investigate banana originally and provide theoretical basis for banana genetics improvement and new varieties breeding.



Key wordsBanana      Genome sequencing      Stress      Functional gene     
Received: 24 November 2011      Published: 25 March 2012
ZTFLH:  Q75  
Cite this article:

LIU Ju-hua, XU Bi-yu, ZHANG Jian-ping, JIA Cai-hong, WANG Jia-shui, ZHANG Jian-bin, JIN Zhi-qiang. Research Progress on Banana Genomics and Functional Genomics Involved in Stress Resistance. China Biotechnology, 2012, 32(03): 110-114.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I03/110


[1] Moffat A S. Crop engineering goes. Science, 1999, 285(5426): 370-371.

[2] Bartos J, Alkhimova O, Dolezelova M, et al. Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications. Cytogenetics and Genome Research, 2005, 109(1-3): 50-57.

[3] Aert R, Sági L, Volckaert G. Gene content and density in banana (Musa acuminata) as revealed by genomic sequencing of BAC clones. Theor Appl Genet, 2004, 109(1):129-139.

[4] Safár J, Noa- Carrazana J C, Vrána J, et al.Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome.Genome, 2004, 47(6):1182-1191.

[5] Cheung F, Town C D. A BAC end view of the Musa acuminata genome. BMC Plant Biol, 2007, 7:29.

[6] http://www.musagenomics.org.

[7] http://www.gnpannot.org/fr/content/ musaceae-statistics.

[8] Hribová E, Neumann P, Matsumoto T, et al. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol, 2010, 10: 204.

[9] Santos C M R, Martins N F, H?rberg H M, et al. Analysis of expressed sequence tags from Musa acuminata ssp.burmannicoides, var. Calcutta 4 (AA) leaves submitted to temperature stresses. Theor Appl Genet, 2005, 110(8): 1517-1522.

[10] Henry I M, Carpentier S C, Pampurova S, et al. Structure and regulation of the Asr gene family in banana.Planta, 2011, 234(4):785-798.

[11] 赵宏亮,冯仁军, 徐碧玉,等.香蕉中 Maasr1 基因的生物信息学分析。生物技术通讯,2006,17(3):336-340. Zhao H L, Feng R J, Xu B Y, et al. Bioinformatical analysis of Maasr1 gene from banana. Letters in Biotechnology, 2006,17(3):336-340.

[12] 王园.香蕉ASR基因抗逆功能的研究.海口:海南大学,农学院,2010,34-65. Wang Y. Study of function of MaASR1 tolerance to drought and salt resistant. Haikou:Hainan University, Agricultudal College,2010,34-65.

[13] Shekhawat U K, Srinivas L, Ganapathi T R. MusaDHN-1, a novel multiple stress-inducible SK(3)-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta, 2011, 234(5):915-932.

[14] Wang Y, Lu W, Jiang Y, et al. Expression of ethylene-related expansin genes in cool-stored ripening banana fruit. Plant Science, 2006, 170(5):962-967.

[15] Shekhawat U K, Ganapathi T R, Srinivas L. Cloning and characterization of a novel stress-responsive WRKY transcription factor gene ( MusaWRKY71) from Musa spp. cv. Karibale Monthan (ABB group) using transformed banana cells. Mol Biol Rep, 2011, 38(6):4023-4035.

[16] Singla-Pareek S L, Yadav S K, Pareek A, et al. Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Research, 2007, 17(2):171-180.

[17] 刘菊华,邓成菊,金志强,等。香蕉乙二醛酶基因 MaGLO14 的克隆及在非生物胁迫下的功能鉴定.中山大学学报,2011,50(5):1-6. Liu J H,Deng C J,Jin Z Q,et al. Isolation and functional identification of banana glyoxalase gene ( MaGLO14 ) under various abiotic stresses. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2011,50(5):1-6.

[18] 邓成菊,贾彩红,张建斌,等.香蕉乙二醛酶基因增强酿酒酵母对非生物胁迫抵抗能力的研究.中国生物工程杂志,2010,30(8):22-26. Deng C J,Jia C H, Zhang J B, et al. Enhancement of tolerance to abiotic stress of Saccharomyces cerevisiae transformed by a gene encoding glyoxalase from banana. China Biotechnology, 2010,30(8):22-26.

[19] Jin X,Feng D, Wang H, et al. A novel tissue-specific plantain β-1,3-glucanase gene that is regulated in response to infection by Fusarium oxysporum fsp. Cubense. Biotechnol Lett, 2007, 29:1431-1437.

[20] Peraza-Echeverria S, James-Kay A, Canto-Canché B, et al. Structural and phylogenetic analysis of Pto-type disease resistance gene candidates in banana.Mol Genet Genomics, 2007, 278(4):443-453.

[21] Liu H Y, Dai J R, Feng D R, et al. Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses. J Integr Plant Biol, 2010, 52(3):315-323.

[22] Zhu X, Wang A, Zhu S, et al. Expression of ACO1, ERS1 and ERF1 genes in harvested bananas in relation to heat-induced defense against Colletotrichum musae. J Plant Physiol, 2011,168(14):1634-1640.

[23] Chen Y P, Chen Y F, Zhao J T, et al. Cloning and expression of resistance gene analogs (RGAs) from wild banana resistant to banana Fusarium wilt. Journal of Plant Physiology and Molecular Biology, 2007, 33(6):567-573.

[24] Ho V S, Ng T B. Chitinase-like proteins with antifungal activity from emperor banana fruits.Protein Pept Lett, 2007, 14(8):828-831.

[25] Ho V S, Wong J H, Ng T B. A thaumatin-like antifungal protein from the emperor banana.Peptides, 2007, 28(4):760-766.

[1] CHEN Ya-chao,LI Nan-nan,LIU Zi-di,HU Bing,LI Chun. Metagenomic Mining of Functional Genes Related to Glycyrrhizin Synthesis from Endophytes of Licorice[J]. China Biotechnology, 2021, 41(9): 37-47.
[2] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[3] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[4] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[5] HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction[J]. China Biotechnology, 2020, 40(7): 30-40.
[6] GAO Xiao-peng,HE Meng-chao,XU Ke,LI Chun. Research Progress on pH Regulation in the Process of Industrial Microbial Fermentation[J]. China Biotechnology, 2020, 40(6): 93-99.
[7] Jun CHEN,Hua-jun ZHENG,Ya-ming LIU,Guo-ping ZHAO,Song QIN. The Analysis of the Low Coverage Haematococcus Pluvialis Draft Genome[J]. China Biotechnology, 2018, 38(7): 21-28.
[8] Yi-man LI,Qin ZHOU. The Effects of Herpud1 on Metanephric Mesenchymal Cells and Its Mechanism[J]. China Biotechnology, 2018, 38(3): 9-15.
[9] YAO Chang-hong, WU Pei-chun, CAO Xu-peng, LIU Jiao, JIANG Jun-peng, XUE Song. Comparative Characterization of Two Arthrospira Strains Isolated from Full-scale Raceway Pond[J]. China Biotechnology, 2017, 37(5): 28-37.
[10] ZHANG Xue, TAO Lei, QIAO Sheng, DU Bing-hao, GUO Chang-hong. Roles of Glutathione S-transferase in Plant Tolerance to Abiotic Stresses[J]. China Biotechnology, 2017, 37(3): 92-98.
[11] SHAN hong-yu, LIU Ren-ze, HAO Meng-qi, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. Phytoferritin and the Response to Oxidative Stress[J]. China Biotechnology, 2017, 37(2): 121-126.
[12] ZHANG Li-li, XU Bi-yu, LIU Ju-hua, JIA Cai-hong, ZHANG Jian-bin, JIN Zhi-qiang. Analysis of Banana MaASR1 Gene Expression Profiles in Arabidopsis Under Drought Stress[J]. China Biotechnology, 2017, 37(11): 59-73.
[13] WANG Li-qun, LU Hong-zhong, CHU Ju, WANG Yong-hong. Dissolved Carbon Dioxide Effects on Glucoamylase Synthesis of Aspergillus niger in Batch and Chemostat Cultures[J]. China Biotechnology, 2017, 37(1): 27-37.
[14] HAN Han, BAO Dan-qi, YANG Fei-yun, LIU Kun, YANG Tian-rui, YANG Qi, LI Guo-jing, WANG Rui-gang. The Cloning and Function Analysis in Flavonoid Pathway of CiCHIL from Caragana intermedia[J]. China Biotechnology, 2016, 36(9): 11-20.
[15] SU Zhi-zhe, WANG Xue-hua, YANG Hua, SUN Huan, WEI Wei. Transcriptome Analysis of Cadmium Exposed Jatropha curcas[J]. China Biotechnology, 2016, 36(4): 69-77.