Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (2): 73-80    DOI: 10.13523/j.cb.20160211
    
Expression of Trehalose Synthase Gene in Pichia pastoris
LI Meng-yue, WANG Teng-fei, WANG Jun-qing, ZHAO Yi-jin, CHENG Cheng, WANG Rui-ming
Department of Biology Engineering, QILU University of Technology, Jinan 250353, China
Download: HTML   PDF(996KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Trehalose synthase can be used to transform the production of trehalose in one step, and its substrate specificity is higher, the production process is simple, and can not be influenced by the concentration of substrate maltose, which is the first choice for industrial production of trehalose. To obtain the surface display vector of Pichia pastoris with the ability of producing trehalose synthase, trehalose synthase gene(tres, 2064 bp) was amplified by PCR from genome of Pseudomonas putide P06(gi=1042893, NCBI), then linked to the plasmid pPICZαA to get the recombinant plasmid pPICZαA-tres. Pir series protein Pir1p which is covalently linked cell wall of Saccharomyces cerevisiae, was used as the anchoring protein, and the pir1p(847 bp) was amplified by PCR technique, then linked to recombinant plasmid pPICZαA-tres, and the recombinant plasmid pPICZA-tres-pir1p was obtained. The recombinant plasmid was transferred into Pichia pastoris GS115 by electroporation, and the protein was directed to the cell wall by a-factor signal peptide and then was displayed on the surface of Pichia pastoris. The positive clones were selected by Zeocin resistance screening. Centrifuging, crushing and using laminarinase hydrolysis the fermentation products, SDS-polyacrylamide gel electrophoresis analysis showed obvious fusion protein bands. The trehalose synthase successfully anchored in Pichia pastoris. The Pichia pastoris strains was hang up using pH 7.5 buffer suspension and the concentration of substrate for 30% of the maltose in 30℃ to 60℃ water bath roling 2 h. Reaction products were analyzed by HPLC and the enzymatic activity can be detected. In the optimized condition, pH 7.5, 50℃, the activity of trehalose synthase reached 300.65U/g. The enzyme activity was stable in the range of 40℃ to 50℃, holding 60 min, the residual activity was more than 75%. The optimum pH was 7.5, and in alkaline environment enzyme activities remained stable.



Key wordsTrehalose      Surface display      Recombinant expression      Trehalose synthase      Pichia pastoris     
Received: 15 September 2015      Published: 19 November 2015
ZTFLH:  Q819  
Cite this article:

LI Meng-yue, WANG Teng-fei, WANG Jun-qing, ZHAO Yi-jin, CHENG Cheng, WANG Rui-ming. Expression of Trehalose Synthase Gene in Pichia pastoris. China Biotechnology, 2016, 36(2): 73-80.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160211     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I2/73

[1] Elbein A D,Pan Y T,Pastuazak I,ei al. New insights on trehalose; a multifunctional molecule. Glycobiology,2003,13(4):17-27.
[2] 段作营,姚林,毛忠贵.Pseudomonas putida S1海藻糖合成酶基因在大肠杆菌中的克隆表达.工业微生物,2008,38(6):7-12. Duan Z Y,Yao L,Mao Z G. Cloning and expression of trehalose synthase gene from Pseudomonas putida S1 in Escherichia coli. Industrial Microbiology,2008,38(6):7-12.
[3] 郝昭程,王腾飞,李忠奎,等. 拟南芥硫酯酶基因在毕赤酵母中的表达. 生物工程学报,2015,31(2):1-8. Hao Z C,Wang T F,Li Z K,et al. Expression of Arabidopsis thaliana thioesterase gene in Pichia pastoris. Chin J Biotech,2015,31(2):1-8.
[4] Charoenrat T,Ketudat-Cairns M,Stendahl-Andersen H,et al. Oxygen-limitedfed-batch process:an alternative control for Pichia pastoris recombinant protein processes. Bioprocess Biosyst Eng,2005,27(6):399-406.
[5] 苟兴华,王卫,刘达玉,等. 麦芽寡糖基海藻糖水解酶基因在巴斯德酵母中的表达及遗传稳定性. 应用与环境生物学报,2010,16(3):408-411. Gou X H,Wang W,Liu D Y,et al. Expression of MTHase gene in Pichia pastoris and its genetic stability. Chinese Journal of Applied and Environmental Biology,2010,16(3):408-411.
[6] 张卉,袁其朋.Hepcidin的基因克隆及其在毕赤酵母中的分泌表达.生物工程学报,2007,23(3):381-385. Zhang H,Yuan Q P. Cloning and secretion expression of hepcidin in Pichia pastoris. Chinese Journal of Biotechnology,2007,23(3):381-385.
[7] 杨蕾蕾,袁其朋,李文进,等.玫瑰微球菌中treZ基因在毕赤酵母中的表达研究.生物技术通报,2009,10:173-177. Yang L L,Yuan Q P,Li W J,et al. Secretory expression of maltooligosyl trehalose trehalohydrolase Pichia pastoris from Micrococcus roseus QS412. Biotechnology Bulletin,2009,10:173-177.
[8] 韩雪清,刘湘涛,尹双辉. 毕赤酵母表达系统. 微生物学杂志,2003,23(4):35-53. Han X Q,Liu X T,Yin S H. Expression system of Pichia pastoris. Journal of Microbiology,2003,23(4):35-53.
[9] Maeauley-Patriek S,Fazenda M L,McNeil B,et al. Heterologous protein production using the Pichia pastoris expression system. Yeast,2015,22(4):249-270.
[10] 刘俊梅,聂海彦,郑薇薇,等.水生栖热菌FL-03海藻糖合酶基因的克隆及真核表达.食品科学,2010,31(23):267-270. Liu J M,Nie H Y,Zheng W W,et al. Cloning and eukaryotic expression of trehalose synthase gene from Thermus aquaticus FL-03. Food Science,2010,31(23):267-270.
[11] 陶站华,王凤芝. 酵母表面展示酶技术. 现代生物医学进展,2010,10(3):593-596. Tao Z H,Wang F Z. Yeast surface display technology. Progress in Modern Biomedicine,2010,10(3):593-596.
[12] Gasser B,Sauer M,Maurer M,et al. Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Applied and Environmental Microbiology,2007,73(20):6499-6507.
[13] Daly R,Heam M T. Expression of heterologous proteins in Pichia pastoris:a useful experimenial tool in protein engineering and production. J Mol Reeognit,2005,18(2):119-138.
[14] De Groot P W,Ram A F,Klis F M. Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol,2005,42(8):657-675.
[15] Fernandez M L,Murga A.Influence of the incubation temperature on the autolytic activity of Lactobacillus acidophilus.Journal of Applied Bacteriology,1995,78:426-429.
[16] Zhu T,You L,Gong F,et al. Combinatorial strategy of sorbitol feeding and low-temperature induction leads to high-level production of alkaline β-mannanase in Pichia pastoris. Enzyme Microb Technol,2011,49(4):407-412.
[17] Jiang F,Kongsaeree P,Schilke K,et al. Effects of pH and temperature on recombinant manganese peroxidase production and stability. Appl Biochem Biotechnol,2008,146(1/3):15-27.
[18] 关波,金坚,李华钟.改良毕赤酵母分泌表达外源蛋白能力的研究进展.微生物报,2011,51(7):851-857. Guan B,Jin J,Li H Z. Genetic engineering of Pichia pastoris expression system for improved secretion of heterologous proteins. Acta Microbiologica Sinica,2011,51(7):851-857.
[19] Leonardo M Damasceno,Chung Jr Huang,Carl A Batt.Protein secretion in Pichia pastoris and advances in protein production. Appl Microbiol Biotechnol,2012,93(1):31-39.
[20] Inan M,Aryasomayajula D,Sinha J,et al. Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnology and Bioengineering,2006,93(4):771-778.
[21] Xu P,Robinson A S. Decreased secretion and unfolded protein response up-regulation are correlated with intracellular retention for single-chain antibody variants produced in yeast. Biotechnology and Bioengineering,2009,104(1):20-29.

[1] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[2] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[3] LE Yi-lin,FU Yu,NI Li,SUN Jian-zhong. Expression and Characterization of a Thermostable Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophile Thermotoga neapolitana and Its Application in Acetyl-CoA Production[J]. China Biotechnology, 2020, 40(3): 72-78.
[4] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[5] XUE Rui,YAO Lin,WANG Rui,LUO Zheng-shan,XU Hong,LI Sha. Advances and Applications of Recombinant Mussel Foot Proteins[J]. China Biotechnology, 2020, 40(11): 82-89.
[6] Jing-yun FENG,Ling-qia SU,Jing WU. Synthesis and Extraction of Trehalose from Multiple Enzymes Reaction[J]. China Biotechnology, 2019, 39(7): 65-70.
[7] Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation[J]. China Biotechnology, 2019, 39(5): 96-104.
[8] HAN Ting-han,ONG Xue-mei,ING Ya-fang,U Chen,ZHANG Kun-xiao,AO song,U Heng-hao. Cloning, Expression and Characterization of a Heat-Labile Uracil-DNA lycosylase from Scophthalmus maximus[J]. China Biotechnology, 2019, 39(10): 34-43.
[9] Yi-ying WANG,Hai-rong CHENG. Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis[J]. China Biotechnology, 2018, 38(8): 41-49.
[10] LIU Cui-cui, HU Meng-die, WANG Zhi, DAI Jun, YAO Juan, LI Pei, LI Zhi-jun, CHEN Xiong, LI Xin. Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii[J]. China Biotechnology, 2017, 37(9): 41-47.
[11] RAO Jing-jing, JING Yi-xian, ZOU Ming-yue, HU Xiao-lei, LIAO Fei, YANG Xiao-lan. Clone, Expression and Characterization of the Uricase from Meyerozyma guilliermondii[J]. China Biotechnology, 2017, 37(11): 74-82.
[12] ZENG Jie. Development and Application of L-Asparaginase with Better Performance and Advances in Recombinant Expression[J]. China Biotechnology, 2017, 37(11): 123-131.
[13] ZHANG Zhen-yang, YANG Yan-kun, ZHAN Chun-jun, LI Xiang, LIU Xiu-xia, BAI Zhong-hu. Pichia pastoris X-33 ΔGT2 Release the Glycerol Repression on AOX1 and Ef-ficiently Express Heterologous Proteins[J]. China Biotechnology, 2017, 37(1): 38-45.
[14] ZHAO Yi-jin, WANG Teng-fei, WANG Jun-qing, WANG Rui-ming. Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores[J]. China Biotechnology, 2017, 37(1): 71-80.
[15] KANG Guo-kai, FENG Guo-dong, CAO Kun-lin, CHEN Zheng-jun, GE Xiang-yang. Optimization for High Production Fermentation of Lunasin from Recombinant Pichia pastoris[J]. China Biotechnology, 2016, 36(8): 73-79.