Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (1): 68-75    DOI: 10.13523/j.cb.20160110
    
Fed-batch Culture of Saccharomyces cerevisiae with Adaptive Control Based on Differential Evolution Algorithm
ZHANG Xu, DING Jian, GAO Peng, GAO Min-jie, JIA Lu-qiang, TU Ting-yong, SHI Zhong-ping
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(892KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In fed-batch culture of Saccharomyces cerevisiae, excessive glucose addition leads to much ethanol accumulation, destroying structure and function of cell and decreasing glucose utilization efficiency, while insufficient glucose addition limits cell growth. To solve this problem, a self-adaptive control strategy based on differential evolution algorithm was proposed. In addition, performances of the proposed strategy, traditional strategy, were tested and compared using computer simulation. As a result, under the proposed control strategy, ethanol concentration could be maintained at the low level of 1.0g/L, while the biomass concentration could reach to the high level of 34.45g/L, which was 243%, 18% and 29% higher than those under intermittent feed, stepped constant feed and PID control strategy, respectively. In conclusion, the proposed self-adaptive control strategy was capable of controlling glucose feed rate at proper level, and thus ensured the rapid growth of yeast when repressing ethanol accumulation.



Key wordsEthanol accumulation      Adaptive control      Saccharomyces cerevisiae      Differential evolution algorithm      System identification     
Received: 09 September 2015      Published: 11 January 2016
ZTFLH:  TQ920.1  
Cite this article:

ZHANG Xu, DING Jian, GAO Peng, GAO Min-jie, JIA Lu-qiang, TU Ting-yong, SHI Zhong-ping. Fed-batch Culture of Saccharomyces cerevisiae with Adaptive Control Based on Differential Evolution Algorithm. China Biotechnology, 2016, 36(1): 68-75.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160110     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I1/68

[1] 邱玲. 乙肝表面抗原在酿酒酵母中的异源表达及优化. 无锡:江南大学,生物工程学院, 2014. Qiu L. Heterologous Experssion and Optimization of HBsAg in Saccharomyces cerevisiae . Wuxi : Jiangnan University, School of Biotechnology,2014.
[2] 王萍, 王泽建, 张嗣良. 生理代谢参数RQ在指导发酵过程优化中的应用. 中国生物工程杂志, 2013, 33(2) : 88-95. Wang P, Wang Z J, Zhang S L. Fermentation optimization directed by physiological parameter respiratory quotient. China Biotechnol, 2013, 33(2) : 88-95.
[3] Zigova J. Effect of RQ and pre-seed conditions on biomass and galactosyl transferase production during fed-batch culture of S. cerevisiae BT150. J Biotechnol, 2000, 80(1) : 55-62.
[4] Gibson B R, Lawrence S J, Leclaire J P R, et al. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev, 2007, 31(5) : 535-569.
[5] Tokuhiro K, Ishida N, Nagamori E, et al. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Appl Microbiol Biotechnol, 2009, 82(5) : 883-890.
[6] Ida Y, Hirasawa T, Furusawa C, et al. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Appl Microbiol Biotechnol, 2013, 97(11) : 4811-4819.
[7] Oud B, Flores C L, Gancedo C, et al. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae . Microb Cell Fact, 2012, 11:113.
[8] Arndt M, Hitzmann B. Kalman filter based glucose control at small set points during fed-batch cultivation of Saccharomyces cerevisiae . Biotechnol Prog, 2004, 20(1) : 377-383.
[9] Paalme T, Kevvai K, Vilbaste A, et al. Uptake and accumulation of B-group vitamers in Saccharomyces cerevisiae in ethanol-stat fed-batch culture. World J Microbiol Biotechnol, 2014, 30(9) : 2351-2359.
[10] Hitit Z Y, Boyacioglu H, Ozyurt B, et al. Self-tuning GMV control of glucose concentration in fed-batch baker's yeast production. Appl Biochem Biotechnol, 2014, 172(8) : 3761-3775.
[11] Rhee I L, Ritzka A, Scheper T. On-line monitoring and control of substrate concentrations in biological processes by flow injection analysis systems. Biotechnol Bioproc Eng, 2004, 9(3) : 156-165.
[12] Valentinotti S, Srinivasan B, Holmberg U, et al. Optimal operation of fed-batch fermentations via adaptive control of overflow metabolite. Control Eng Pract, 2003, 11(6) : 665-674.
[13] Vovsik J, Hrncirik P, Náhlík J, et al. Adaptive control of Saccharomyces cerevisiae yeasts fed-batch cultivations. Chem Biochem Eng Q, 2013, 27(3) : 297-306.
[14] Storn R, Price K. Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim, 1997, 11(4) : 341-359.
[15] Ponsich A, Coello Coello C A. Differential evolution performances for the solution of mixed-integer constrained process engineering problems. Appl Soft Comput, 2011, 11(1) : 399-409.
[16] Mallipeddi R, Suganthan P N, Pan Q K, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput, 2011, 11(2) : 1679-1696.
[17] Piotrowski A P. Differential evolution algorithms applied to neural network training suffer from stagnation. Appl Soft Comput, 2014, 21 : 382-406.
[18] Takamatsu T, Shioya S, Okada Y, et al. Profile control scheme in a bakers' yeast fed-batch culture. Biotechnol Bioeng, 1985, 27(12) : 1675-1686.
[19] Can I, Tosunoglu F, Kahya E. Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Coruh basin, Turkey. Water Environ J, 2012, 26(4) : 567-576.
[20] Liu Y C, Wu J, Liu Y, et al. Analyzing effects of climate change on streamflow in a glacier mountain catchment using an ARMA model. Quatern Int, 2015, 358 : 137-145.

[1] MEI Xue-ang, CHEN Yan, WANG Rui-zhao, XIAO Wen-hai, WANG Ying, LI Xia, YUAN Ying-jin. Engineered Yeast Cell for Producing Zeaxanthin[J]. China Biotechnology, 2016, 36(8): 64-72.
[2] WANG Rui-zhao, PAN Cai-hui, WANG Ying, XIAO Wen-hai, YUAN Ying-jin. Design and Construction of highβ-carotene Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(7): 83-91.
[3] ZHANG Wen-qian, XIAO Wen-hai, ZHOU Xiao, WANG Ying. Effect of Post-squalene Genes on the Synthesis of 7-Dehydrocholesterol in the Artificial Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(6): 39-50.
[4] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[5] LIU Bao-li, LIU Gao-gang, LIN Qiu-hui, LI Bing-zhi, YUAN Ying-jin. Construction of Recombinant Xylose-utilizing Saccharomyces cerevisiae by Three-plasmid Co-transformation Combinatorial Screening Method[J]. China Biotechnology, 2016, 36(12): 86-97.
[6] ZHONG Cheng, LIU Ling-pu, LI Qing-liang, YANG Pan-fei, HAO Jun-guang, JIA Shi-ru. Analyze the Mechanism of Flavor Compounds Formation Using Metabonomics Method During Industrial Beer Fermentation[J]. China Biotechnology, 2016, 36(12): 49-58.
[7] LIANG Xiang nan, ZHANG Kun, ZOU Shao lan, WANG Jian jun, MA Yuan yuan, HONG Jie fang. Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration[J]. China Biotechnology, 2016, 36(11): 54-62.
[8] SUN Huan, JIA HAI-yang, FENG XU-dong, LIU Yue-qin, LI Chun. Screening of Heat-resistant Device in Saccharomyces cerevisiae[J]. China Biotechnology, 2015, 35(3): 75-83.
[9] ZHANG Xu, WANG Jing-jing, LIU Jian-ping. The Optimization of Saccharomyces cerevisiae Expression System by Mutagenesis of Promoter and Host Strain[J]. China Biotechnology, 2015, 35(1): 61-66.
[10] LIU Yu-xue, ZHANG Yi-xin, WANG Lei, LIN Xin-ping, ZHU Zhi-wei, ZHAO Zong-bao. Formation of Equol from Dihydrodaidzein by Recombinant Saccharomyces cerevisiae[J]. China Biotechnology, 2014, 34(4): 41-45.
[11] LI Yun-cheng, TANG Yue-qin, KIDA Kenji. Application of OMICS Technology in Construction of Saccharomyces cerevisiae Strains for Ethanol Production[J]. China Biotechnology, 2014, 34(2): 118-128.
[12] ZHAO Xiu-juan, ZHENG Xiao-dong, XUE Tao-tao, CAI Lu. Comparison of ARS Element Forming Nucleosome on Saccharomyces cerevisiae YPH499 Ⅲ Chromosome in vitro[J]. China Biotechnology, 2014, 34(11): 34-41.
[13] LU Jian, JIAN Jia-xi, LIU Jian-ping, WANG Hong-hai. The Vaccination with Saccharomyces cerevisiae Recombined with Mycobacterium tuberculosis Antigens Induces Specific Immunoresponsesin Mice[J]. China Biotechnology, 2014, 34(11): 47-53.
[14] YANG Hua-jun, ZOU Shao-lan, LIU Cheng, MA Yuan-yuan, MA Xiang-xia, HONG Jie-fang. Advance in Research on Cellulase Expression in Saccharomyces cerevisiae[J]. China Biotechnology, 2014, 34(06): 75-83.
[15] FANG Hua, LI Hao. The Roles of Trehalose and Heat Shock Proteins for Enhancing Ethanol Tolerance of Saccharomyces cerevisiae[J]. China Biotechnology, 2014, 34(06): 84-89.