Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (9): 88-95    DOI:
    
The Application of Nanomaterials in Biomedical Detection
WANG Ping, MAO Hong-ju
State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Download: HTML   PDF(657KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Nanotechnology is an emerging technology with enormous potential in biology and biotechnology, medicine and medical technology. Its application in biomedical sciences presents many revolutionary opportunities in the fight against all kinds of cancer, infection and other diseases. The wide variety of core materials coupled with tunable surface properties such as optical, electronic and magnetic properties, making nanoparticles an excellent platform for a broad range of biological and biomedical applications. Several common nanomaterials including gold nanoparticles, quantum dots, magnetic nanoparticles, carbon nanotubes and silicon nanowires in the application of proteins, DNA, metal ions and biologically relevant molecules detection are reviewed.



Key wordsNanomaterials      Detection      Gold nanoparticles      Quantum dots      Magnetic nanoparticles      Carbon nanotubes      Silicon nanowires     
Received: 06 May 2011      Published: 25 September 2011
ZTFLH:  Q789  
Cite this article:

WANG Ping, MAO Hong-ju. The Application of Nanomaterials in Biomedical Detection. China Biotechnology, 2011, 31(9): 88-95.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I9/88


[1] Wittenberg N J, Haynes C L. Using nanoparticles to push the limits of detection. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2009, 1(2):237-254.

[2] Agasti S S, Rana S, Park M-H, et al. Nanoparticles for detection and diagnosis. Advanced Drug Delivery Reviews, 2010, 62(3):316-328.

[3] Hauck T S, Giri S, Gao Y, et al. Nanotechnology diagnostics for infectious diseases prevalent in developing countries. Advanced Drug Delivery Reviews, 2010, 62(4-5):438-448.

[4] Giljohann D A, Seferos D S, Daniel W L, et al. Gold Nanoparticles for Biology and Medicine. Angewandte Chemie International Edition, 2010, 49(19):3280-3294.

[5] Wilson R. The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews, 2008, 37(9):2028-2045.

[6] Zhao W, Brook MA, Li Y. Design of Gold Nanoparticle-Based Colorimetric Biosensing Assays. ChemBioChem, 2008, 9(15):2363-2371.

[7] 郭青川,王祥,娄新徽,等. 基于纳米金比色检测NOS1AP基因单碱基突变. 高等学校化学学报,2010, 31(10): 1965-1969. Guo Q C,Wang X,Lou X H,et al. Chemical Journal of Chinese Universities, 2010, 31(10):1965-1969.

[8] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(6592):607-609.

[9] Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. P Natl Acad Sci USA, 2004, 101(39):14036-14039.

[10] Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric Ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angewandte Chemie International Edition, 2007, 46 (22):4093-4096.

[11] Ma L N, Liu D J, Wang Z X. Synthesis and applications of gold nanoparticle probes. Chinese J Anal Chem, 2010, 38(1):1-7.

[12] Medintz I L, Mattoussi H. Quantum dot-based resonance energy transfer and its growing application in biology. Physical Chemistry Chemical Physics, 2009, 11(1):17-45.

[13] Ling J A, Huang C Z. Energy transfer with gold nanoparticles for analytical applications in the fields of biochemical and pharmaceutical sciences. Analytical Methods, 2010, 2(10):1439-1447.

[14] Algar W R, Massey M, Krull U J. The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics. Trac Trends in Analytical Chemistry, 2009, 28(3):292-306.

[15] Radwan S H, Azzazy H M. Gold nanoparticles for molecular diagnostics. Expert Review of Molecular Diagnostics, 2009, 9(5):511-524.

[16] Ray P C, Fortner A, Darbha G K. Gold nanoparticle based FRET asssay for the detection of DNA cleavage. The Journal of Physical Chemistry B, 2006, 110(42):20745-20748.

[17] Griffin J, Singh A K, Senapati D, et al. Size-and distance-dependent nanoparticle surface-energy transfer (NSET) method for selective sensing of hepatitis C Virus RNA. Chemistry-A European Journal, 2009, 15(2): 342-351.

[18] Jin Y, Li H, Bai J. Homogeneous selecting of a quadruplex-binding ligand-based gold nanoparticle fluorescence resonance energy transfer assay. Analytical Chemistry, 2009, 81(14):5709-5715.

[19] Liu J, Lee J H, Lu Y. Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Analytical Chemistry, 2007, 79(11): 4120-4125.

[20] Nam J M, Stoeva S I, Mirkin C A. Bio-bar-code-based DNA detection with PCR-like sensitivity. Journal of the American Chemical Society, 2004, 126(19):5932-5933.

[21] Thaxton C S, Hill H D, Georganopoulou D G, et al. A bio-bar-code assay based upon dithiothreitol-induced oligonucleotide release. Analytical Chemistry, 2005, 77(24):8174-8178.

[22] White K A, Rosi N L. Gold nanoparticle-based assays for the detection of biologically relevant molecules. Nanomedicine, 2008, 3(4):543-553.

[23] Wang Y, Mao H J, Zang G Q, et al. Detection of hepatitis B virus deoxyribonucleic acid based on gold nanoparticle probe chip. Chinese J Anal Chem, 2010, 38(8):1133-1138.

[24] Stoeva S I, Lee J S, Smith J E, et al. Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. Journal of the American Chemical Society, 2006, 128(26):8378-8379.

[25] Wagner M K, Li F, Li J, et al. Use of quantum dots in the development of assays for cancer biomarkers. Analytical and Bioanalytical Chemistry, 2010, 397(8):3213-3224.

[26] Ray S, Chandra H, Srivastava S. Nanotechniques in proteomics: Current status, promises and challenges. Biosensors and Bioelectronics, 2010, 25(11):2389-2401.

[27] Algar W R, Krull U J. New opportunities in multiplexed optical bioanalyses using quantum dots and donor-acceptor interactions. Analytical and Bioanalytical Chemistry, 2010, 398(6): 2439-2449.

[28] Algar W R, Tavares A J, Krull U J. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Analytica Chimica Acta, 2010, 673(1): 1-25.

[29] Bailey V J, Easwaran H, Zhang Y, et al. MS-qFRET: a quantum dot-based method for analysis of DNA methylation. Genome Res, 2009, 19(8): 1455-1461.

[30] Boeneman K, Mei B C, Dennis A M, et al. Sensing Caspase 3 Activity with Quantum Dot?Fluorescent Protein Assemblies. Journal of the American Chemical Society, 2009, 131(11):3828-3829.

[31] Cheng A K H, Su H, Wang Y A, et al. Aptamer-Based Detection of Epithelial Tumor Marker Mucin 1 with Quantum Dot-Based Fluorescence Readout. Analytical Chemistry, 2009,81(15):6130-6139.

[32] Wang X, Lou X, Wang Y, et al. QDs-DNA nanosensor for the detection of hepatitis B virus DNA and the single-base mutants. Biosensors and Bioelectronics, 2010, 25(8):1934-1940.

[33] Snee P T, Somers R C, Nair G, et al. A Ratiometric CdSe/ZnS Nanocrystal pH Sensor. Journal of the American Chemical Society, 2006, 128(41): 13320-13321.

[34] Xia Z, Rao J. Biosensing and imaging based on bioluminescence resonance energy transfer. Current Opinion in Biotechnology, 2009, 20(1):37-44.

[35] Medintz I L, Farrell D, Susumu K, et al. Multiplex charge-transfer interactions between quantum dots and peptide-bridged ruthenium complexes. Analytical Chemistry, 2009, 81(12): 4831-4839.

[36] Shubayev V I, Pisanic Ii T R, Jin S. Magnetic nanoparticles for theragnostics. Advanced Drug Delivery Reviews, 2009, 61(6):467-477.

[37] Fornara A, Johansson P, Petersson K, et al. Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano Lett, 2008, 8(10):3423-3428.

[38] Yantasee W, Hongsirikarn K, Warner C L, et al. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles. Analyst, 2008, 133(3):348-355.

[39] Jangpatarapongsa K, Polpanich D, Yamkamon V, et al. DNA detection of chronic myelogenous leukemia by magnetic nanoparticles. Analyst, 2011, 136(2):354-358.

[40] Aillon K L, Xie Y, El-Gendy N, et al. Effects of nanomaterial physicochemical properties on in vivo toxicity. Advanced Drug Delivery Reviews, 2009, 61(6):457-466.

[41] Wang H, Yang R, Yang L, et al. Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano, 2009, 3(9):2451-2460.

[42] Yang R, Tang Z, Yan J, et al. Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. Analytical Chemistry, 2008, 80(19):7408-7413.

[43] Chen Z, Tabakman S M, Goodwin A P, et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat Biotech, 2008, 26(11):1285-1292.

[44] Zhang L, Li T, Li B, et al. Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(II) ion. Chem Commun (Camb), 2010, 46(9): 1476-1478.

[45] Tey J N, Gandhi S, Wijaya I P, et al. Direct detection of heroin metabolites using a competitive immunoassay based on a carbon-nanotube liquid-gated field-effect transistor. Small, 2010, 6(9):993-998.

[46] Song Y, Wang X, Zhao C, et al. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chemistry, 2010, 16(12):3617-3621.

[47] Gao Z, Agarwal A, Trigg A D, et al. Silicon Nanowire Arrays for Label-Free Detection of DNA. Analytical Chemistry, 2007, 79(9):3291-3297.

[48] Zhang G J, Zhang L, Huang M J, et al. Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sensors and Actuators B: Chemical, 2010, 146(1):138-144.

[49] Zheng G F, Gao X P A, Lieber C M. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Letters, 2010, 10(8): 3179-3183.

[50] Azzazy H M E, Mansour M M H. In vitro diagnostic prospects of nanoparticles. Clinica Chimica Acta, 2009, 403(1-2):1-8.

[51] de Dios A S, Díaz-García M E. Multifunctional nanoparticles: analytical prospects. Analytica Chimica Acta, 2010, 666(1-2):1-22.

[1] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[2] LI Shuai-peng,REN He,AN Zhan-fei,YANG Yan-kun,BAI Zhong-hu. The Development of Chemiluminescence Immunoassay Detection Method for Thrombomodulin[J]. China Biotechnology, 2021, 41(4): 30-36.
[3] ZHANG Xue-jie,TANG Jia-bao,LI Ting-dong,GE Sheng-xiang. Advances in Single Molecule Immunoassay[J]. China Biotechnology, 2021, 41(4): 47-54.
[4] ZHOU Zi-hui,LIU Xiao-xian,HUANG Hao,XIAO Rui,QI Ke-zong,WANG Sheng-qi. Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection[J]. China Biotechnology, 2021, 41(2/3): 70-77.
[5] ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection[J]. China Biotechnology, 2021, 41(10): 73-88.
[6] HUANG Zhao-hong,HUANG Yun-hong,HUANG Yan-mei,LONG Zhong-er,SHAN Shan. Advances in Detection and Typing of Diarrheal Escherichia coli with PCR[J]. China Biotechnology, 2020, 40(7): 82-90.
[7] SUN Heng,WANG Jing,ZENG Ling-gao,WANG Jian-hua. Application of Peptide Nucleic Acid in Virus Detection and Therapy[J]. China Biotechnology, 2020, 40(1-2): 146-153.
[8] Zuo-bo XU,Jiu-bing LI,Hong-lei DING. Research Progress in Mycoplasma hyopneumonia Detection Technology[J]. China Biotechnology, 2019, 39(4): 78-83.
[9] Si-nan QIN,Lu-hua TANG,Wen-hui GAO. Preparation of Enrofloxacin Molecular Imprinting Electro- chemical Sensor and Its Application to Rapid Detection of Foods[J]. China Biotechnology, 2019, 39(3): 65-74.
[10] ZHAN Hui-lu,BAI Ying,ZHUANG Yan,MENG Juan,ZHAO Hai-yang. Research Progress of Autophagy Induced Protection by Nanomaterials[J]. China Biotechnology, 2019, 39(12): 64-72.
[11] LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming. Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody[J]. China Biotechnology, 2019, 39(10): 105-110.
[12] Hong-yuan CHEN,Hong-yan CHEN,Chun QIAO,Jian-yong LI,Da-ru LU. The Establishment of a Novel Detection System for MYD88 L265P in Waldenström’s Macroglobulinemia[J]. China Biotechnology, 2018, 38(9): 35-40.
[13] Fang-xu WANG,Yu-ling CHEN,Du-yan GENG,Chuan-fang CHEN. Research Progress on Biomedical Applications of Magnetotactic Bacteria and the Biosynthetic Magnetosomes[J]. China Biotechnology, 2018, 38(9): 74-80.
[14] Hao QIU,Ming-shu WANG,An-chun CHENG. γPNA——A New Type of High Efficient Peptide Nucleic Acid[J]. China Biotechnology, 2018, 38(2): 75-81.
[15] Shuai CUI,Zuo-ping WANG,Jiang-hui YU,Guo-ying XIAO. Event-specific Detection Methods of Genetically Modified Rice BPL9K-2[J]. China Biotechnology, 2018, 38(11): 32-41.