Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (9): 76-81    DOI:
    
The Expression System of Antibody and Antibody Fragment and Strategy of High-level Production
CHEN Yao-zu, ZHANG Juan, WANG Min
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
Download: HTML   PDF(507KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With the widely use of MAbs and their fragments, traditional hybridoma technology cannot meet the increasing demands of Mabs or antibody fragments. Owing to the rapid development and matures of recombinant DNA technology and biological engineering Technology, it is possible to manufacture Mabs/fragments in large scale. Firstly, the most popularly expression system such as Escherichia coli (E.coli ), yeast, insect cell and mammalian cell system were listed and compared. To achieve high-level expression, secondly, the strategies including modification of recombinant protein (fusion of protein, site-specific mutagenesis), expression in vivo, choice of expression system, optimization of codon and expression circumstance were discussed. Finally, the prospective of the field of antibody/antibody fragment expression was described with consideration of bioinformatics playing an important role in this area, and it is the right time to construct the platform of high expression.



Key wordsExpression of antibody and it’s fragment      Expression system      Molecule modification      Induction optimization     
Received: 16 May 2011      Published: 25 September 2011
ZTFLH:  Q786  
Cite this article:

CHEN Yao-zu, ZHANG Juan, WANG Min. The Expression System of Antibody and Antibody Fragment and Strategy of High-level Production. China Biotechnology, 2011, 31(9): 76-81.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I9/76


[1] 甄永苏,邵荣光.抗体工程药物. 北京:化学工业出版社,2002:48. Zhen Y S, Shao R G. Antibody Engineering Pharmaceutics. Beijing: Chemical Industry Press, 2002: 48.

[2] Sytse J, Piersmaa, Marij J P, et al. Tumor-specific regulatory T cells in cancer patients, Human Immunology,2008,69: 241-249.

[3] Hans P S, Kim K M. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol. 2005, 115(2):113-128.

[4] Duenas M, Ayala M, Vazquez J, et al. A point mutation in a murine immunoglobulin V-region strongly influences the antibody yield in Escherichia coli. Gene, 1995, 158: 61-66.

[5] Pierre M, Peter J, Greg W. Expression of an antibody fragment at high levels in the bacterial cytoplasm. J Mol Biol, 1998, 280:117-127.

[6] Philip H T, Brenda M S, Patrick S S. Contributions of a highly conserved VH/VL hydrogen bonding interaction to scFv folding stability and refolding efficiency. Biophys J, 1998, 75(3):1473-1482.

[7] Redwanel R M, Matar S M, Serour I A. Recombinant human J-chain: fix the protein aggregations and yield maximize. Hum Antibodies, 2006,15(3):95-102.

[8] Hu X J, Ronan O D, Gerard J W. Cloning, expression and characterisation of a single-chain Fv antibody fragment against domoic acid in Escherichia coli. J Biotechnol, 2005,120(1):38-45.

[9] Hiroyuki S, Yoichi K, Tomohisa K, et al. Functional expression of single-chain Fv antibody in the cytoplasm of Escherichia coli by thioredoxin fusion and co-expression of molecular chaperones. Protein Expr Purif, 2010,70(2):248-253.

[10] Horacio B, Yariv M, Shelly S, et al. Escherichia coli Maltose-binding Protein as a Molecular Chaperone for Recombinant Intracellular Cytoplasmic Single-chain Antibodies. J Mol Biol,2001,312:79-93.

[11] Verma R, Boleti E, George A J T. Antibody engineering: Comparison of bacterial, yeast,insect and mammalian expression systems. Journal of Immunological Methods,1998, 216:165-181.

[12] 杨炼,刘自琴,刘蓉,等. 抗黄曲霉毒素B1单链抗体的表达载体的比较.食品科学, 2010, 31(9): 171. Yang L,Liu Z Q,Liu R, et al. China Biotechnology, 2010, 31(9):171.

[13] Sylvain R, Kliment P, Thierry D, et al. Comparison of three microbial hosts for the expression of an active catalytic scFv. Protein Expr Purif, 2010,70(2):248-253.

[14] Keith D M, Jane W F, Sean A G, et al. Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli, Protein Expr Purif,2005,42(2):255-267.

[15] Brian R, Blarcom T V, George G. A scFv Antibody Mutant Isolated in a Genetic Screen for Improved Export via the Twin Arginine Transporter Pathway Exhibits Faster Folding. J Mol Biol,2007, 369, 631-639.

[16] Noor F I, Salehhuddin H, Nor M M, et al. A mutant L-asparaginase II signal peptide improves the secretion of recombinant cyclodextrin glucanotransferase and the viability of Escherichia coli, Biotechnol Lett DOI 10.1007/s10529-011-0517-8.

[17] Joel G, Susan L, Masayoriinouye. Enhancement of protein translocation across the membrane by specific mutations in the hydrophobic region of the signal peptide, Journal of Bacteriology, 1990, 1225-1231.

[18] Maertens B, Spriestersbach A, von Groll U, et al. Gene optimization mechanisms: a multi-gene study reveals a high success rate of full-length human proteins expressed in Escherichia coli. Protein Sci,2010,19(7):1312-1326.

[19] Tiwari A, Sankhyan A, Khanna N, et al. Enhanced periplasmic expression of high affinity humanized scFv against Hepatitis B surface antigen by codon optimization. Protein Expr Purif,2010,74(2):272-279.

[20] Lin B, Renshaw M W, Autote K, et al. A step-wise approach significantly enhances protein yield of a rationally-designed agonist antibody fragment in E. coli, Protein Expr Purif, 2008 59(1):55-63.

[21] Grzegorz K, Andrew W M, David T, et al. Coding-sequence determinants of gene expression in Escherichia coli, Science,2009,324:225.

[22] Santala V, Lamminmki U. Production of a biotinylated single-chain antibody fragment in the cytoplasm of E.coli. J Immunol Methods,2004,284(1-2):165-175.

[23] Zhang J L, Wang J H, Zhong R G, et al. Optimization of human anti-HBsAg scFv secretary expression in Escherichia coli, Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi,2009,23(1):50-52.

[24] Want A, Thomas O R, Kara B, et al. Studies related to antibody fragment (Fab) production in Escherichia coli W3110 fed-batch fermentation processes using multiparameter flow cytometry,Cytometry A,2009,75(2):148-154.

[25] Hackel B J, Huang D, Bubolz J C, et al. Production of soluble and active transferrin receptor-targeting single-chain antibody using Saccharomyces cerevisiae, Pharm Res,2006,23(4):790-797.

[26] Fang J M, Qian J J, Yi S L, et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nature Biotechnology,2005,Apr;23, 584 -590.

[27] Partha S C, George V, Richard B, et al. Improved Stability and Yield of a Fv-Toxin Fusion Protein by Computer Design and Protein Engineering of the Fv. J Mol Biol,1998,281:917-928.

[1] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[2] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[3] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[4] QI Jia-long, GAO Rui-yu, JIN Shu-mei, GAO Fu-lan, YANG Xu, MA Yan-bing, LIU Cun-bao. Expression and Identification of Varicella-Zoster Virus Glycoprotein E and Immunogenicity Assay[J]. China Biotechnology, 2019, 39(8): 17-24.
[5] LI Dan, HUANG He. Heterologous Expression of Nanobodies:a Recent Progress[J]. China Biotechnology, 2017, 37(8): 84-95.
[6] HU Li-qiang, ZHENG Wen, ZHONG Yi, DU Dan, YANG Hao, GONG Meng. Comparison of Expression and Activity of Antiviral Protein RC28 in Escherichia coli and Pichia pastoris[J]. China Biotechnology, 2017, 37(1): 14-20.
[7] WU Jie, ZHANG Xiao-xue, YU He-shui, LI Wei, JIA Yu-ping, GUO Jiang-yu, ZHANG Li-juan, SONG Xin-bo. Research Progress of High Density Fermentation Process of Pichia pastoris[J]. China Biotechnology, 2016, 36(1): 108-114.
[8] TIAN Cong-hui, TANG Yan-ting, WANG Quan, ZHOU Hong-gang. Estabilishment and Application of a Model for Drug Screening Targeting Neprilysin Proteinase[J]. China Biotechnology, 2015, 35(2): 52-58.
[9] LU Qing-shan, QIAO Yuan-yuan, LI Jin-feng, WANG Yun-liang, WANG Shan-shan, SHI Cheng-he, YANG Xiao-peng, ZHANG Da-jin. Soluble Expression of Human HPPCn Recombinant Protein and Detection of Its Proliferation Activity[J]. China Biotechnology, 2015, 35(12): 15-20.
[10] ZHANG Xu, WANG Jing-jing, LIU Jian-ping. The Optimization of Saccharomyces cerevisiae Expression System by Mutagenesis of Promoter and Host Strain[J]. China Biotechnology, 2015, 35(1): 61-66.
[11] GUO Li-li, OU Xia, MI Kai, SUN Mao-sheng, LI Hong-jun. Expression of Enterovirus 71 VLP in Baculovirus System and Evaluation of Its Immunogenicity[J]. China Biotechnology, 2013, 33(1): 8-13.
[12] YANG Bo, CHEN Hai-qin, SONG Yuan-da, ZHANG Hao, CHEN Wei. Study of the Enzymatic Function of Myosin Cross Reactive Antigen from Bifidobacterium animalis[J]. China Biotechnology, 2012, 32(12): 30-36.
[13] FENG Pei-ping, ZHANG Lei, CHAI Xiu-li, ZHANG Hai-ling, ZHAO Jian-jun, HU Bo, BAI Xue, GAO Han, SHAO Xi-qun, YAN Xi-jun, ZHAO Quan, XU Lei. Expression of Nucleocapsid Protein of Canine Distemper Virus Base on Bac-to-Bac Baculovirus System[J]. China Biotechnology, 2012, 32(04): 60-66.
[14] XU Wen-qi, CHAI Xiao-jie, ZHANG Ting, DAI Jing-yu, ZHANG Xiao-lin. Construction of Trypsin Inhibitor KSTI3 Gene New Eukaryotic Expression System and Expression in Dunaliella salina[J]. China Biotechnology, 2011, 31(8): 29-34.
[15] ZHANG Mei, FU Yuan-hui, HE Jin-sheng, LU Yan-yan, ZHENG Xian-xian. Expression and Purification of Enhanced Green Fluorescent Protein Based on Baculovirus Expression System[J]. China Biotechnology, 2011, 31(5): 99-103.