Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (5): 125-131    DOI:
    
The Third Generation Sequencing Technology and Its Application
ZHANG De-fang1, MA Qiu-yue2, YIN Tong-ming1, XIA Tao1,2
1. Key Lab of Forest Genetics and Biotechnology Nanjing Forestry University, Nanjing 210037, China;
2. Forestry Resources and Environment institute, Nanjing Forestry University, Nanjing 210037, China
Download: HTML   PDF(701KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  With the development and application of next generation sequencing technology (NGS), some disadvantages are emerging. The third generation single molecular sequencing technology, to a certain extent, may offset these disadvantages of the next generation sequencing in application. This study elaborated the 4 sequencing principles of the third generation single molecular sequencing technologies, compared the advantages and disadvantages with these sequencing technologies, and presented their application in genome sequencing, methylation research, RNA sequencing and medical research.

Key wordsThe third generation sequencing technology      Single molecular sequencing technology      SMRT      tSMS     
Received: 15 January 2013      Published: 25 May 2013
ZTFLH:  Q523+.8  
Cite this article:

ZHANG De-fang, MA Qiu-yue, YIN Tong-ming, XIA Tao. The Third Generation Sequencing Technology and Its Application. China Biotechnology, 2013, 33(5): 125-131.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I5/125

[1] Pop M, Salzburg S L. Bioinformatics challenges of new sequencing technology. Trends Genet. 2008, 24(3):142-149.
[2] Acinas S G,Sarnm R R,Klepac-Ceraj V,et al.PCR induced sequence artifacts and bias:insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol,2005,71(12):8966-8969.
[3] Tortes T T,Metta M,Ottenwälder B, et al.Gene expression profiling by massively parallel sequencing. Genome Res. 2008, 18(1): 172-177.
[4] Derrington I M, Butler T Z, Collins M D. et al. Nanopore DNA sequencing with Msp. A. Proc. Natl Acad. Sci. USA, 2010, 107: 6060- 6065.
[5] Luan B, Peng H, Polonsky S, et al. Base-By-Base ratcheting of single stranded DNA through a solid-state nanopore. Phys. Rev. Lett., 2010, 104: 238103.
[6] Eid J, Fehr A, Gray J, et al., Real-time DNA sequencing from single polymerase molecules. Science, 2009, 323, 133-138.
[7] Bowers J, Mitchell J, Beer E, et al. Virtual terminator nucleotides for next-generation DNA sequencing. Nat. Methods, 2009,6, 593-595.
[8] TesslerL A, Reifenberger J G, Mitra R D. Protein quantification in complex mixtures by solid phase single-molecule counting. Anal Chem, 2009,81, 7141-7148.
[9] Braslavsky I, Hebert B, Kartalov E, et al. Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci USA. 2003, 100(7): 3960-3964.
[10] Harris T D, Buzby P R, Babcock H, et al. Single-molecule DNA sequencing of a viral genome. Science, 2008, 320(5872): 106-109.
[11] Ozsolak F, Platt A R, Jones D R, et al. Direct RNA sequencing. Nature, 2009, 461(7265): 814-818.
[12] Pacific B, PacBio M P C A, USA on World Wide Web URL: http://www. pacificbiosciences. com.
[13] Stephen Turner. Single Molecule Real Time (SMRTTM) DNA Sequencing, pacific biosciences, 1-12.
[14] http://www.pacificbiosciences.com/products/smrt-technology
[15] Travers K J, Chin C S, Rank D R, et al. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucl Acids Res. 2010, 38(15): 159.
[16] Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science, 2009, 323(5910): 133-138.
[17] Levene M J, Korlach J, Turner S W, et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science, 2003 299(5607): 682-686.
[18] Shendure J A, Porreca G J, Church G M, et al. Overview of DNA sequencing strategies, current protocols in molecular biology, 2011, chapter7, 7.1.1-1.1.23.
[19] Schadt E E, Turner S and Kasarskis A. A window into third-generation sequencing, human molecular genetics, 2010, 19(2): 227-240.
[20] Clarke J, Wu H C, Jayasinghe L, et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol, 2009, 4: 265-270.
[21] Howorka S, Cheley S, Bayley H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nat. Biotechnol., 2001, 19: 636-639.
[22] Stoddart D, Heron A J, Mikhailova E, et al. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl Acad. Sci USA, 2009, 106: 7702-7707.
[23] Rahul Roy, Sungchul H, Taekjip H. A practical guide to single-molecule FRET. Nature Methods. 2008, 5: 507-516.
[24] Hardin S, Gao X L, Briggs J, et al. America, Methods for real-time single molecule sequence determination. US7329492. 2008.
[25] English A C, et al. Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology. PLoS ONE. 2012, 7(11): 47768.
[26] Perry G H, Reeve D, Melsted P, et al. A Genome Sequence Resource for the Aye-Aye (Daubentonia madagascariensis), a Nocturnal Lemur from Madagascar. Genome Biology and Evolution, 2011, 4(2): 126-135.
[27] David A R. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in germany. N Engl J Med. 2011, 365:709-717.
[28] Ribeiro F, Przybylski D, Yin S, et al. Finished bacterial genomes from shotgun sequence data, Genome Res. 2012. 22(11):2270-2277.
[29] Pushkarev D, Neff N F, Quake S R. Single-molecule sequencing of an individual human genome. Nat. Biotechnol, 2009, 27: 847-852.
[30] Harris T D, Buzby P R, Babcock H, et al. Single-molecule DNA sequencing of a viral genome. Science, 2008, 320: 106-109.
[31] Song C X, Clark T A, Yu X, et al. Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat. Meth. 2012, 9: 75-77.
[32] Flusberg B A, Webster D R, Lee J H, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Meth. 2010, 7: 461-465
[33] Catherine C S, Qi W, Chin C S, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012, 485: 260-263.
[34] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet, 2009, 10: 57-63.
[35] Lipson D, Raz T, Kieu A, et al. Quantification of the yeast transcriptome by single-molecule sequencing. Nat Biotechnol 2009, 27: 652-658.
[36] Ozsolak F, Platt A R, Jones D R, et al. Direct RNA sequencing. Nature, 2009, 461: 814-818.
[37] Uemura S, Aitken C E, Korlach J, et al. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature, 2010, 464: 1012-1017.
[38] Philipp K, Fatih O, Kim S W, et al. New class of gene-termini-associated human RNAs suggests a novel RNA copying mechanism. Nature, 2011, 466: 642-646.
[39] Erick W, Loomis, John S Ei, et al. Sequencing the unsequenceable: Expanded CGG-repeat alleles of the fragile X gene. Genome Res. 2013, 23: 121-128.
[40] Janet E, Dancey G, philippe L, et al. The genetic basis for cancer treatment decisions. Cell, 2012, 148(3): 409-420.
[41] Wheeler D A, Srinvasan M, Egholm T, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature, 2008, 452: 872-876.
[42] Zhang X, Davenport K W, Gu W, et al. Improving genome assemblies by sequencing PCR products with PacBio, BioTechniques, 2012, 53: 61-62.
[43] Shen S Q. Single molecule sequencing and individual medical. Progress in physiological sciences. 2009, 40(3): 283-288.
No related articles found!