Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (5): 75-80    DOI:
    
Agrobacterium tumefaciens-mediated Transformation of Larix leptolepis Embryogenic Tissue
ZHU Cai-hong1, LI Shui-gen1, QI Li-wang1, HAN Su-ying2
1. Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091 China;
2. Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091 China
Download: HTML   PDF(681KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Based on the technique of L. leptolepis somatic embryogenesis, embryogenic tissues were transformed by A. tumefaciens strain GV3101 carrying a binary plasmid pSuper1300+ with the hpt gene as a selectable marker. Factors that influence transformation were investigated and discussed, including the physiological status of plant calli, the concentration of bacteria, the duration of bacterial infection and co-culture. As a result, after infected by 0.4(OD600)bacterial solution for 10min, co-culture for 2d, then washed three times by liquid medium supplemented with 400mg/L cefotaxime, followed by recovery culture for 7d and selection by 5mg/L hygromycin for several times, a total of 54 hygromycin-resistant cell lines had been obtained. The transformation efficiency is 0.94 transgenic cell lines obtained from per gram of plant calli on average. All the resistant cells were positively transgenic confirmed by polymerase chain reaction (PCR). The development of such a robust transformation method not only provides a useful approach for genetic improvement but also allows us to conduct a functional identification of genes in L. leptolepis.

Key wordsLarix leptolepis      Embryogenic tissues      Agrobacterium tumefaciens      Transformation     
Received: 08 November 2012      Published: 25 May 2013
ZTFLH:  Q819  
Cite this article:

ZHU Cai-hong, LI Shui-gen, QI Li-wang, HAN Su-ying. Agrobacterium tumefaciens-mediated Transformation of Larix leptolepis Embryogenic Tissue. China Biotechnology, 2013, 33(5): 75-80.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I5/75

[1] 马常耕, 孙晓梅. 我国落叶松遗传改良现状及发展方向. 世界林业研究, 2008, 21(6): 58-63. Ma CH G, Sun X M. Larch genetic improvement and its future development in China. World Forestry Research, 2008, 21(6): 58-63.
[2] 陈少瑜, 陈芳, 王寅冰,等. 针叶树种遗传转化研究进展与应用. 世界林业研究, 2006, 2: 12-17. Chen SH Y, Chen F, Wang Y B. Research progress on conifer genetic transformation. World Forestry Research, 2006, 2: 12-17.
[3] Trontin J, Walter C, Klimaszewska K, et al. Recent progress in genetic transformation of four Pinus spp. Transgenic Plant Journal, 2007, 1 (2): 314-329.
[4] 齐力旺, 韩一凡, 李玲. 华北落叶松体细胞胚胎发生及遗传转化实验系统的建立(简报). 实验生物学报, 2000, 33 (4): 357-365. Qi L W, Han Y F, Li L. The somatic embryogenesis and establishment of transformation experiment system in larix principis-Rupprechtii. Acta Biologiae Experimentalis Sinica, 2000, 33 (4): 357-365.
[5] 朱彩虹, 栗婷, 韩素英,等.三种抗生素对落叶松细胞系生长的影响.分子植物育种(网络版), 2010, 8: 第15篇. Zhu C H, Li T, Han S Y. Effects of 3 antibiotics on growth of embryogenic tissues of larch. Fenzi Zhiwu Yuzhong (Online), 2010, 8, No.15.
[6] Wang J L, Chen P L. Genetic transformation of Eucommia ulmoides oliv with the late embryogenesis abundant protein Gene. International Symposium on Eucommia ulmoides, 2007, 1 (1):72-74.
[7] Shrestha B R, Chin D P, Tokuhara K et al. Efficient production of transgenic plantls of Vanda through sonication-assisted Agrobacterium-mediated transformation of protocorm-like bodies. Plant Biotechnology, 2007, 24: 429-434.
[8] Tereso S, Miguel C, Zoglauer K et al. Stable Agrobacterium-mediated transformation of embryogenic tissues from Pinus pinaster portuguese genotypes. Plant Growth Regulation, 2006, 50 (1): 57-68.
[9] Charity J A, Holland L, Grace L J. Consistent and stable expression of the nptII, uidA and bar genes in transgenic Pinus radiata after Agrobacterium tumefaciens-mediated transformation using nurse cultures. Plant Cell Reports, 2005, 23(9): 606-616.
[10] Bergmann B A, Stomp A M. Effect of host plant genotype and growth rate on Agrobacterium tumefaciens-mediated gall formation in Pinus radiata. Phytopathology, 1992, 82(12): 1457-1462.
[11] Le V Q, BellesIsles J, Dusabenyagusani M et al. An improved procedure for production of white pruce (Picea glauca) transgenic plants using Agrobacterium tumefaciens. Journal of Experimental. Botany, 2001, 52 (364): 2089-2095.
[12] Dutt M, Madhavaraj J, Grosser J W et al. Agrobacterium tumefaciens-mediated genetic transformation and plant regeneration from a complex tetraploid hybrid citrus root stocks. Scientia Horticulturae, 2010, 123(4): 454-458.
[13] Pushyami B, Beena M R, Sinha M K et al. In vitro regeneration and optimization of conditions for Agrobacterium-mediated transformation in jute, Corchorus capsularis. Journal of Plant Biochemistry and Biotechnology, 2011, 20 (1): 39-46.
[14] Levee V, Garin E, Klimaszewska K, Seguin A. Stable genetic transformation of white pine (Pinus strobes L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol Breed,1999, 5: 429-440.
[15] Trontin J F, Harvengt L, Garin E et al. Towards genetic engineering of maritime pine (Pinus pinaster Ait.). Annals of Forest Science, 2002, 59 (5-6): 68-697.
[16] Lee S H, Lee D G, Woo H S et al. Production of transgenic Orchardgrass via Agrobacterium-mediated transformation of seed-derived callus tissues. Plant Science, 2006, 171(3): 408-414.
[1] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[2] WANG Yi-han,LI Hai-yan,XUE Yong-chang. The Structural Characteristics and Engineering Reconstruction of Flavin-dependent Halogenase[J]. China Biotechnology, 2021, 41(4): 74-80.
[3] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[4] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[5] MENG Xiao-lin,PANG Xi-ming,WANG Jie. Agrobacterium-mediated Transformation and the Functions of Pks in Marine-derived Penicillium oxalicum[J]. China Biotechnology, 2020, 40(9): 11-17.
[6] YANG Li,SHI Xiao-yu,LI Wen-lei,LI Jian,XU Han-mei. Optimization of Electroporation Conditions in Construction of Phage Display Antibody Library[J]. China Biotechnology, 2020, 40(4): 42-48.
[7] Yue-lei FAN,Jiao LU,Da-ming CHEN,Kai-yun MAO. Strategies for Stem Cell Patent Evaluation and Patent Transfer and Transformation[J]. China Biotechnology, 2019, 39(1): 99-106.
[8] Bo-wen CHEN,Hai-long LIU,Yu-fei XIAO,Zi-hai QIN,Ye ZHANG,Xiao-ning ZHANG. Directional Regulation of Lignin Monomer Synthesis in Tobacco by Using COMT Gene and CCoAOMT Gene of Eucalyptus urophylla[J]. China Biotechnology, 2018, 38(3): 24-32.
[9] Zheng-san ZUO,Dong-sheng GUO,Xiao-jun JI,Ping SONG,He HUANG. Polyunsaturated Fatty Acids and Their Derivatives in the Intestinal Tract:a Review[J]. China Biotechnology, 2018, 38(11): 66-75.
[10] Ting AN,Jing JI,Yu-rong WANG,Zhi-gang MA,Gang WANG,Qian LI,Dan YANG,Song-hao ZHANG. Analysis of the Transformation Efficiency and Induced Differentiation of Lilium brownii Scales[J]. China Biotechnology, 2018, 38(1): 25-31.
[11] XIA Hui, LIU Lei, WANG Xiu, SHEN Yan-qiu, GUO Yu-lun, LIANG Dong. Research on Stress-inducible Expression Characteristics of Sorbitol-6- phosphate Dehydrogenase Promoter from Apple[J]. China Biotechnology, 2017, 37(6): 50-55.
[12] SUN Dan, ZHANG Min, XIE Chang-rui, GUO Xiao-wei, XU He-han, GAO Hong-tao, LI Xiao-wei, SUN Tian-xu, LI Hai-yan. Establishment of Genetic Transformation System of Cordyceps militaris using PEG Mediated Method[J]. China Biotechnology, 2017, 37(4): 76-82.
[13] YAO Ren-hui, DONG Zhuo, LI Hui. Biotransformation of Androst-4-en-3,17-dione by Gibberella intermedia C2[J]. China Biotechnology, 2017, 37(3): 73-77.
[14] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[15] ZENG Si-yu, SHI Tian-qiong, SHI Kun, REN Lu-jing, HUANG He, JI Xiao-jun. Establishment and Application of Genetic Motification System for Mortierella alpina[J]. China Biotechnology, 2016, 36(7): 112-116.