Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (5): 44-49    DOI:
    
Preparation and Method of Microcarrier Based on Konjac Glucomannan Microsphere
KANG Ji-yao1,2, ZHANG Ning1,2, ZHOU Wei-qing2, SUN Li-jing2, ZHANG Gui-feng2, MA Guang-hui2, SU Zhi-guo2
1. School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China;
2. National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
Download: HTML   PDF(567KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Konjac glucomannan (KGM) microspheres were activated with 1,4-butanediol diglycidyl ether, and the collagen was coupled on the activated microsphere for preparation of micro-carrier for cell culture. For process optimization, the orthogonal regression experiments were carried out by four factors and three levels including activation time, protein consumption, coupled time, the crosslinker dosage effect of microcarrier cell culture. Based on culture effect of Vero cell, the optimum condition for preparation of collagen coated micro-carrier is activation time 5 h, the coupling of time 5 h, protein dosage 1 g:0.1 g (ball:protein), the amount of crosslinking agent 1g: 0.5ml (bead:crosslinking agent). The largest cell density was 1.7?106 cells/ml under the optimal preparation condition. The result indicates that KGM microspheres coupled with collagen is suitable for cell culture as microcarrier.

Key wordsKonjac glucomannan microspheres      Gelatin      Coulping      Microcarrier      Cell culture     
Received: 25 February 2013      Published: 25 May 2013
ZTFLH:  Q78  
Cite this article:

KANG Ji-yao, ZHANG Ning, ZHOU Wei-qing, SUN Li-jing, ZHANG Gui-feng, MA Guang-hui, SU Zhi-guo. Preparation and Method of Microcarrier Based on Konjac Glucomannan Microsphere. China Biotechnology, 2013, 33(5): 44-49.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I5/44

[1] Van Wezel A L. Growth of cell-strains and primary cells microcarriers in homogenous cuture. Nature, 1967, 216(5110): 64-65.
[2] 刘轶,朱国强.动物细胞培养及微载体技术研究进展. 吉林农业大学学报,2007, 29(2): 203-206. Liu Y, Zhu G Q. Animal cell cultivation and progress in technology of microcarrier. Journal of Jilin Agricultural University, 2007, 29(2): 203-206.
[3] Valente J F A, Gaspar V M, Antunes B P, et al. Microencapsulated chitosan-dextran sulfate nanoparticles for controlled delivery of bioactive molecules and cells in bone regeneration. Polymer, 2013, 54(1): 5-15.
[4] Phillips B W, Horne R, Lay T S, et al. Attachment and growth of human embryonic stem cells on microcarriers. Journal of Biotechnology. 2008, 123(1-2): 24-32.
[5] Chen A K L, Chen X L, Choo A B H, et al. Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Research. 2011, 7(2):97-111.
[6] Udrea L E, Hritcu D, Popa M L, et al. Preparation and characterization of polyvinyl alcohol-chitosan biocompatible magnetic microparticles. Journal of Magnetism and Magnetic Materials. 2011, 323(1): 7-13.
[7] 王璐.丝素微球的制备及其作为细胞载体的研究.苏州大学,2011. Wang L, Preparation and Properties of Silk Fibroin Microspheres for Cell Culture. Suzhou University, 2011.
[8] Lau T T, Wang C M, Wang D A. Cell delivery with genipin crosslinked gelatin microspheres in hydrogel/microcarrier composite. Composites Science and Technology, 2010, 70: 1909-1914.
[9] 周燕,刘宝林,杨波,等.微载体培养技术的研究与进展.中国组织工程研究与临床康复,2010, 14(16): 2945-2948. Zhou Y, Liu B L, Yang B, et al. Research and progress of microcarrier culture technology. Journal of clinical rehabilitative tissue engineering research, 2010, 14(16): 2945-2948.
[10] 米钰,惠俊峰,范代娣,等.类人胶原蛋白生物相容性实验研究.西北大学学报(自然科学版),2004,34(1): 66-68,72. Mi Y, Hui J F, Fan D D, et al. The biocompatibility of human-like collagen. Journal of Northwest University(Natural Science Edition). 2004, 34(1): 66-68,72.
[11] Hillegas W J, Varani J. Collagen-coated Polystyrene Microcarier Beads, US4994388,1991.
[12] Machiko KATO, Saitama. Ken SUGO, Saitama. Collagen-coated carrier and method for manufacturing collagen-coated carrier, US20060270037A1, 2006.
[13] 王国祥,聂峰光,苏志国,等.明胶包被的琼脂糖微载体及其细胞培养特性.药物生物技术, 2001, 8(5): 264-267. Wang G X, Nie F G, Su ZH G, et al. The cell culture property of agarose coated by gelatin. Pharmaceutical biotechnology, 2001, 8(5): 264-267.
[14] 周立,蒋磊,郑远旗.魔芋葡甘聚糖凝胶为亲和导析载体与Sepharose 4B的比较研究Ⅱ.KGM染料亲和层析分离人血清白蛋白.天然产物研究与开发,2000, 12(2): 23-26. Zhou L, Jiang L,Zheng Y Q. Comparison investigation of KGM gel and sepharose 4B as affinity substrates Ⅱ. Purification of HAS from human serum by dye affinity chromatography using KGM gel as substrate. Nature product research and development, 2000, 12(2): 23-26.
[15] Li Q, Xia B, Branhan M, et al. Self-assembly of carboxymethyl konjac glucomannan-g-poly(ethylene glycol) and (α-cyclodextrin) to biocompatible hollow nanospheres for glucose oxidase encapsulation. Carbohydrate Polymers. 2011, 86(1): 120-126.
[16] Yu H Q, Xiao C B. Synthesis and properties of novel hydrogels from oxidized konjac glucomannan crosslinked gelatin for in vitro drug delivery. 2008, 72(3): 479-489.
[17] Kurokawa M, Sato S. Growth and poliovirus production of Vero cells on a novel microcarrier with artificial cell adhesive protein under serum-free conditions. Biosci Bioeng, 2011, 111(5): 600-604.
[18] Rosenfeld H, Aniulyte J, Helmholz H, et al. Comparison of modified supports on the base of glycoprotein interaction studies and of adsorption investigations. 2005, 1092(1): 76-88.
[19] Scoble J A, Scopes R K. Assay for determining the number of reactive groups on gels used in affinity chromatography and its application to the optimization of the epichlorohydrin and divinylsulfone activation reactions. Chromatogr. A, 1996, 752(1/2): 67-76.
[20] Liu T, Zhang G F, Zhou W B, et al. Determination of modification degree of succinylated gelatin by size exclusion chromatography coupled with multi Angle laser light scattering. Chinese Journal of Analytical Chemistry, 2007, 35(1): 43-48.
[21] GB5009.5-2010《食品安全国家标准食品中蛋白质的测定》.
[1] Yu-lei GUO,Liang TANG,Rui-qiang SUN,You LI,Yi-jun CHEN. High-Throughput Micro Bioreactor Development for Biopharmaceuticals[J]. China Biotechnology, 2018, 38(8): 69-75.
[2] Hui-nan ZHANG,Meng-meng LI,Jing WEN,Shu-yi WU,Shi-jian LAN,Zhong-li LUO. Self-assembling Peptide R2I4R2 for Skin Wounds Repairing[J]. China Biotechnology, 2018, 38(2): 7-12.
[3] LI Zhi-li, YI Xiao-ping, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. A Microcarrier Cell Culture Process for propagating Porcine Parvovirus in PK-15 Cells[J]. China Biotechnology, 2015, 35(7): 62-67.
[4] LIU Bo-ning. The Lasted Development of Large Scale Cell Culture Technology for Commercial Antibody Manufacture[J]. China Biotechnology, 2013, 33(7): 103-111.
[5] GONG Di, YI Xiao-ping, ZHANG Yuan-xing. A Study on Scale-up Process for Microcarrier Cultue of MDCK Cells Using Low Serum Medium[J]. China Biotechnology, 2012, 32(09): 55-60.
[6] LU Li-fang, SUI Li-li. WAVETM Bioreactors and Spinner Flasks: Comparison of the Process Performance of Microcarrier Bead to Bead Transfer and Scale up[J]. China Biotechnology, 2012, 32(09): 61-69.
[7] YE Ling-ling, LIU Hong, LI Shi-chong, YANG Zhen-xi, LIU Xing-mao, WANG Qi-wei, CHEN Zhao-lie. Effects of Adenoviral E1B-19K Gene Overexpression on the Growth and Metabolism of HEK293 Cells[J]. China Biotechnology, 2012, 32(02): 57-62.
[8] WU Xiao-yun, WANG Shi-li, MU Zhong-xiang. Adult Stem Cells Harvested by Implanting Gelatin Sponges into Spatium Intermusculare[J]. China Biotechnology, 2011, 31(06): 6-11.
[9] ZHAO Zhen-li, CAI Shao-xi, DAI Xiao-zhen. Microfluidic Chip Application in Stem Cell Research[J]. China Biotechnology, 2011, 31(03): 81-86.
[10] . Ang2,Tie2 RNA Interference and the Function of Them on Inhibiting Angiogenesis in vitro[J]. China Biotechnology, 2010, 30(04): 20-25.
[11] . Differentiation of fish gelatin from bovine/porcine gelatin by tandem mass spectrometry[J]. China Biotechnology, 2009, 29(06): 101-107.
[12] WANG Fang- Du-Qiang-An- Shu-Wan-Wan- Tun-Di- Xu-Yan-Ling- Guan-Yun-Qian- Zhang-Yu. Impact of serially low density passage on Oct-4 positive percentage and neurogenesis potential of mouse ES derived progenitors in differentiated expanding stage[J]. China Biotechnology, 2009, 29(04): 39-45.
[13] . Cell Large-scale Culture on Microcarrier in Bioreactor[J]. China Biotechnology, 2008, 28(专刊): 215-219.
[14] . Localization of hepatitis B surface antigen within recombinant CHO cells in response to dimethyl sulfoxide[J]. China Biotechnology, 2008, 28(2): 16-20.
[15] . Culture of microencapsulated endostatin-CHO cells[J]. China Biotechnology, 2007, 27(9): 1-7.