Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (4): 101-105    DOI:
    
Preparation of a Novel Self-assembly Nanoparticle Based on Amphiphilic γ-Polyglutamic Acid Derivatives as a Protein Carrier
CHEN Kuan-ting1, YAO Jun1, RUAN Wen-hui2, WEI Qin-jun1, LU Ya-jie1, CAO Xin1
1. Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Nanjing 210029, China;
2. Shanxi Institute of Medicine and Life Science, Taiyuan 030001, China
Download: HTML   PDF(590KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  A novel amphiphilic graft copolymer composed of γ-polyglutamic acid (γ-PGA) as the hydrophilic backbone and cholesterol as the hydrophobic segment was synthesized. The cholesterol-bearing γ-PGA (γ-PGA-Graft-CH) was used to form self-assembly nanoparticles (γ-PGA-Graft-CH NPs) with an inner hydrophobic core and an outer hydrophilic shell via the ultrasonic probe method. The obtained nanoparticles showed low cytotoxicity and a narrow size distribution (PDI=0.17) with a mean diameter 299.6+5.4 nm. OVA-loading γ-PGA-Graft-CH NPs was also successfully prepared, with drug loading content of 118.8μg/mg, and entrapment efficiency of 33.5%. The experimental results also showed that OVA continuously released from γ-PGA-Graft-CH NPs in the phosphate buffered saline (PBS) solutions,and its release was sensitive to the pH of the release medium.

Key wordsγ-Polyglutamic acid      Graft copolymer      Self-assembly nanoparticles      Drug carrier     
Received: 18 October 2012      Published: 25 April 2013
ZTFLH:  Q819  
Cite this article:

CHEN Kuan-ting, YAO Jun, RUAN Wen-hui, WEI Qin-jun, LU Ya-jie, CAO Xin. Preparation of a Novel Self-assembly Nanoparticle Based on Amphiphilic γ-Polyglutamic Acid Derivatives as a Protein Carrier. China Biotechnology, 2013, 33(4): 101-105.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I4/101

[1] Gupta R B, Kompella U B. 纳米粒给药系统. 北京: 科学出版社, 2010.3-10. Gupta R B, Kompella U B. Nanoparticle Technology for Drug Delivery. Beijing:Science Press, 2010.3-10.
[2] Thassu D, Deleers M, Pathak Y. 纳米粒药物输送系统. 北京: 北京大学医学出版社, 2010. 1-34. Thassu D, Deleers M, Pathak Y. Nanoparticulate Drug Delivery System. Beijing:Science Press, 2010.1-34.
[3] Torchilin V P. Structure and design of polymeric surfactantbased drug delivery systems. J Control Release, 2001, 73: 137-172.
[4] Fua G D, Li G L, Neoh K G, et al. Hollow polymeric nanostructures—Synthesis, morphology and function. Prog Polymer Sci, 2011, 36: 127-167.
[5] Kedar U, Pharma M, Phutane P, et al. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: Nanotechnology, Biology, and Medicine 2010, 6: 714-729.
[6] Rao J P, Kurt E G. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci, 2011, 36: 887-913.
[7] Nair L S, Sterns T, Ko J, et al. Biodegradable polymers as biomaterials. Prog Polym Sci, 2007, 32: 762-798.
[8] Ishizu K, Tsubaki K, Mori A. Architecture of nanostructured polymers. Prog Polym Sci, 2003, 28: 27-54.
[9] Hans M L, Lowman A M. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci, 2002, 6: 319-327.
[10] Xun W, Wang H Y, Li Z Y, et al. Self-assembled micelles of novel graft amphiphilic copolymers for drug controlled release. Colloids and Surfaces B: Biointerfaces, 2011, 85(1): 86-91.
[11] Ravi K, Muzzarelli R, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives. Chem Rev, 2004, 104: 6017-6084.
[12] 蒋刚彪, 张余, 刘慧. 壳聚糖作为药物载体的应用概况. 中国药房, 2007, 8(3): 1022-1023. Jiang G B, Zhang Y, Liu H. Review on applications of chitosan as drug carriers. China Pharmacy, 2007, 8(3): 1022-1023.
[13] 徐虹, 欧阳平凯. 生物高分子[M]. 北京: 化学工业出版社, 2010.18-96. Xu H, Ouyang P K. Biopolymers, Beijing: Beijing Chemical Industry Press, 2010.18-96.
[14] Ashiuchi M, Misono H. In: S.R. Fahnestock, Steinbuchel A, Eds. Biopolymers. Weinheim:WileyVCH, 2002.123.
[15] 姚俊, 陈宽婷, 魏钦俊等. 一株γ-聚谷氨酸合成菌的筛选与鉴定. 微生物学通报, 2011, 38(2): 164-168. Yao J, Chen K T, Wei Q J, et al. Screening and identification of a novel γ-polyglutamic acid producing strain. Microbiology, 2011, 38(2): 164-168.
[16] 王银松, 王玉玫, 李荣珊, 赵晶, 张其清. 新型壳聚糖基自组装纳米胶束紫杉醇药物释放载体. 高等学校化学学报, 2008, 29(6): 1065-1069. Wang Y S, Wang Y M, Li R S, et al. Chitosan-based self-assembled nanomicelles as a novel carrier for paclitaxel. Chem J Chinese Universities, 2008, 29(6): 1065-1069.
[17] Wang Y S, Liu L R, Weng J, et al. Preparation and characterization of self-aggregated nanoparticles of cholesterol-modified O-carboxylmethyl chitosan conjugates. Carbohydr Polym, 2007, 69: 597-606.
[1] SUN Li-ping,XU Wan,LI Meng-wei,ZENG Ru,WENG Jian. Advances of the Physiochemical Properties of Sporopollenin and Its Biomedical Applications[J]. China Biotechnology, 2021, 41(9): 92-100.
[2] LI Jia-xin,ZHANG Zheng,LIU He,YANG Qing,LV Cheng-zhi,YANG Jun. Preparation and Drug Release Properties of Keratin-loaded Nanoparticles[J]. China Biotechnology, 2021, 41(8): 8-16.
[3] Xiao-qian PAN,Xiang-yuan XIONG,Yan-chun GONG,Zi-ling LI,Yu-ping LI. Advances in Research of Oral Anticancer Drug Nanocarrier[J]. China Biotechnology, 2018, 38(9): 65-73.
[4] SHAO Ming-xiang, GONG Min, TANG Li-da. Utility of the Self-assembling Peptides as Novel Drug Formulations[J]. China Biotechnology, 2013, 33(8): 118-126.
[5] ZHANG Wen, ZHANG Shu-qing, MA Xiao-tong, HE Cui-cui. The Optimization Research of Fermentation Medium of γ-Polyglutamic Acid(γ-PGA) Produced by Bacillus natto[J]. China Biotechnology, 2013, 33(11): 44-50.
[6] HUANG Kai-Zong, WANG Wen-Xing, ZHANG Guang-E. Advances in Applications of Elastin-like Polypeptides in Biomedical Materials[J]. China Biotechnology, 2010, 30(05): 128-132.